Perturbed weighted trapezoid inequalities for convex functions with applications
-
Sever Silvestru Dragomir
sever.dragomir@vu.edu.au
-
Eder Kikianty
eder.kikianty@up.ac.za
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2603.507Abstract
We consider trapezoid type inequalities for twice differentiable convex functions, perturbed by a non-negative weight. Applications on a normed space \( (X, \lVert \,\cdot\, \rVert) \) are considered, by establishing bounds for the term
\[ \begin{multline*} \frac{1}{2} \left[\lVert \frac{x+y}{2} \rVert^p + \frac{\lVert x \rVert^p + \lVert y \rVert^p}{2} \right] - \int_{0}^{1} \lVert (1-t)x + ty \rVert^p \, dt, \\ x, y \in X \end{multline*} \]
which can be seen as a combination of both the midpoint and the trapezoid \(p\)-norm (with \(2\leq p<\infty\)) inequalities.
Keywords
Mathematics Subject Classification:
P. Cerone and S. S. Dragomir, “A refinement of the Grüss inequality and applications,” Tamkang J. Math., vol. 38, no. 1, pp. 37–49, 2007.
P. Chebyshev, “Sur les expressions approximatives des intégrales définies par les autres prises entre les mêmes limites,” Proc. Math. Soc. Charkov, vol. 2, pp. 93–98, 1882.
X.-L. Cheng and J. Sun, “A note on the perturbed trapezoid inequality,” JIPAM. J. Inequal. Pure Appl. Math., vol. 3, no. 2, 2002, Art. ID 29.
I. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, ser. Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1990, vol. 62, doi: 10.1007/978-94-009-2121-4.
S. S. Dragomir, “An inequality improving the first Hermite-Hadamard inequality for con- vex functions defined on linear spaces and applications for semi-inner products,” JIPAM. J. Inequal. Pure Appl. Math., vol. 3, no. 2, 2002, Art. ID 31.
S. S. Dragomir, “An inequality improving the second Hermite-Hadamard inequality for con- vex functions defined on linear spaces and applications for semi-inner products,” JIPAM. J. Inequal. Pure Appl. Math., vol. 3, no. 3, 2002, Art. ID 35.
S. S. Dragomir, “Smooth normed spaces of (BD)-type,” J. Fac. Sci. Univ. Tokyo Sect. IA Math., vol. 39, no. 1, pp. 1–15, 1992.
S. S. Dragomir, Semi-inner products and applications. Nova Science Publishers, Inc., Haup-pauge, NY, 2004.
S. S. Dragomir, “Ostrowski type inequalities for Lebesgue integral: a survey of recent results,” Aust. J. Math. Anal. Appl., vol. 14, no. 1, 2017, Art. ID 1.
L. Fejér, “Über die Fouriersche Reihe, II,” Mat. Természett. Értes., vol. 24, pp. 369–390, 1906.
J. R. Giles, “Classes of semi-inner-product spaces,” Trans. Amer. Math. Soc., vol. 129, pp. 436–446, 1967, doi: 10.2307/1994599.
G. Grüss, “Über das Maximum des absoluten Betrages von {(frac{1}{{b - a}}intlimits_a^b {fleft( x right)} gleft( x right)dx - frac{1}{{left( {b - a} right)^2 }}intlimits_a^b {fleft( x right)dx} intlimits_a^b g left( x right)dx)}}” Math. Z., vol. 39, no. 1, pp. 1935, doi: 10.1007/BF01201355.
E. Kikianty, S. S. Dragomir, and P. Cerone, “Sharp inequalities of Ostrowski type for convex functions defined on linear spaces and application,” Comput. Math. Appl., vol. 56, no. 9, pp. 2235–2246, 2008, doi: 10.1016/j.camwa.2008.03.059.
E. Kikianty, S. S. Dragomir, and P. Cerone, “Ostrowski type inequality for absolutely continuous functions on segments in linear spaces,” Bull. Korean Math. Soc., vol. 45, no. 4, pp. 763–780, 2008, doi: 10.4134/BKMS.2008.45.4.763.
G. Lumer, “Semi-inner-product spaces,” Trans. Amer. Math. Soc., vol. 100, pp. 29–43, 1961, doi: 10.2307/1993352.
A. M. Ostrowski, “On an integral inequality,” Aequationes Math., vol. 4, pp. 358–373, 1970, doi: 10.1007/BF01844168.
Similar Articles
- T.M.M. Sow, A new iterative method based on the modified proximal-point algorithm for finding a common null point of an infinite family of accretive operators in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Fethi Soltani, \(L^p\) local uncertainty inequality for the Sturm-Liouville transform , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Sepide Hajighasemi, Shirin Hejazian, Surjective maps preserving the reduced minimum modulus of products , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Vito Lampret, Double asymptotic inequalities for the generalized Wallis ratio , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Paolo D‘alessandro, An immediate derivation of maximum principle in Banach spaces, assuming reflexive input and state spaces , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Mehdi Dehghanian, Choonkil Park, Yamin Sayyari, Stability of ternary antiderivation in ternary Banach algebras via fixed point theorem , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Zvonko Cerin, Squares in Euler triples from Fibonacci and Lucas numbers , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- U. Guerrero-Valadez, H. Torres-López, A. G. Zamora, Deformaciones de variedades abelianas con un grupo de automorfismos , CUBO, A Mathematical Journal: In Press
- L.T. Rachdi, A. Rouz, Homogeneous Besov spaces associated with the spherical mean operator , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- G. Suresh, Ch Vasavi, T.S. Rao, M.S.N. Murty, Existence of Ψ-Bounded Solutions for Linear Matrix Difference Equations on Z+ , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 S. S. Dragomir et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











