Perturbed weighted trapezoid inequalities for convex functions with applications
-
Sever Silvestru Dragomir
sever.dragomir@vu.edu.au
-
Eder Kikianty
eder.kikianty@up.ac.za
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2603.507Abstract
We consider trapezoid type inequalities for twice differentiable convex functions, perturbed by a non-negative weight. Applications on a normed space \( (X, \lVert \,\cdot\, \rVert) \) are considered, by establishing bounds for the term
\[ \begin{multline*} \frac{1}{2} \left[\lVert \frac{x+y}{2} \rVert^p + \frac{\lVert x \rVert^p + \lVert y \rVert^p}{2} \right] - \int_{0}^{1} \lVert (1-t)x + ty \rVert^p \, dt, \\ x, y \in X \end{multline*} \]
which can be seen as a combination of both the midpoint and the trapezoid \(p\)-norm (with \(2\leq p<\infty\)) inequalities.
Keywords
Mathematics Subject Classification:
P. Cerone and S. S. Dragomir, “A refinement of the Grüss inequality and applications,” Tamkang J. Math., vol. 38, no. 1, pp. 37–49, 2007.
P. Chebyshev, “Sur les expressions approximatives des intégrales définies par les autres prises entre les mêmes limites,” Proc. Math. Soc. Charkov, vol. 2, pp. 93–98, 1882.
X.-L. Cheng and J. Sun, “A note on the perturbed trapezoid inequality,” JIPAM. J. Inequal. Pure Appl. Math., vol. 3, no. 2, 2002, Art. ID 29.
I. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, ser. Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1990, vol. 62, doi: 10.1007/978-94-009-2121-4.
S. S. Dragomir, “An inequality improving the first Hermite-Hadamard inequality for con- vex functions defined on linear spaces and applications for semi-inner products,” JIPAM. J. Inequal. Pure Appl. Math., vol. 3, no. 2, 2002, Art. ID 31.
S. S. Dragomir, “An inequality improving the second Hermite-Hadamard inequality for con- vex functions defined on linear spaces and applications for semi-inner products,” JIPAM. J. Inequal. Pure Appl. Math., vol. 3, no. 3, 2002, Art. ID 35.
S. S. Dragomir, “Smooth normed spaces of (BD)-type,” J. Fac. Sci. Univ. Tokyo Sect. IA Math., vol. 39, no. 1, pp. 1–15, 1992.
S. S. Dragomir, Semi-inner products and applications. Nova Science Publishers, Inc., Haup-pauge, NY, 2004.
S. S. Dragomir, “Ostrowski type inequalities for Lebesgue integral: a survey of recent results,” Aust. J. Math. Anal. Appl., vol. 14, no. 1, 2017, Art. ID 1.
L. Fejér, “Über die Fouriersche Reihe, II,” Mat. Természett. Értes., vol. 24, pp. 369–390, 1906.
J. R. Giles, “Classes of semi-inner-product spaces,” Trans. Amer. Math. Soc., vol. 129, pp. 436–446, 1967, doi: 10.2307/1994599.
G. Grüss, “Über das Maximum des absoluten Betrages von {(frac{1}{{b - a}}intlimits_a^b {fleft( x right)} gleft( x right)dx - frac{1}{{left( {b - a} right)^2 }}intlimits_a^b {fleft( x right)dx} intlimits_a^b g left( x right)dx)}}” Math. Z., vol. 39, no. 1, pp. 1935, doi: 10.1007/BF01201355.
E. Kikianty, S. S. Dragomir, and P. Cerone, “Sharp inequalities of Ostrowski type for convex functions defined on linear spaces and application,” Comput. Math. Appl., vol. 56, no. 9, pp. 2235–2246, 2008, doi: 10.1016/j.camwa.2008.03.059.
E. Kikianty, S. S. Dragomir, and P. Cerone, “Ostrowski type inequality for absolutely continuous functions on segments in linear spaces,” Bull. Korean Math. Soc., vol. 45, no. 4, pp. 763–780, 2008, doi: 10.4134/BKMS.2008.45.4.763.
G. Lumer, “Semi-inner-product spaces,” Trans. Amer. Math. Soc., vol. 100, pp. 29–43, 1961, doi: 10.2307/1993352.
A. M. Ostrowski, “On an integral inequality,” Aequationes Math., vol. 4, pp. 358–373, 1970, doi: 10.1007/BF01844168.
Similar Articles
- Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Jacqueline Rojas, Ramon Mendoza, Eben da Silva, Projective Squares in â„™² and Bott‘s Localization Formula , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Ferenc Szidarovszky, Vernon L. Smith, Steven Rassenti, Cournot Models: Dynamics, Uncertainty and Learning , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Carl Chiarella, Ferenc Szidarovszky, A Multiobjective Model of Oligopolies under Uncertainty , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- S. S. Dragomir, M. V. Boldea, M. Megan, Inequalities for Chebyshev functional in Banach algebras , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- Toufik Moussaoui, Radu Precup, Positive Solutions for Elliptic Boundary Value Problems with a Harnack-Like Property , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- George A. Anastassiou, Poincar´e Type Inequalities for Linear Differential Operators , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- John A.D. Appleby, James P. Gleeson, Alexandra Rodkina, Asymptotic Constancy and Stability in Nonautonomous Stochastic Differential Equations , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- F. Cardoso, G. Vodev, Semi-Classical Dispersive Estimates for the Wave and Schr¨odinger Equations with a Potential in Dimensions 𓃠≥ 4 , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Messaoud Bounkhel, Arc-wise Essentially Tangentially Regular Set-valued Mappings and their Applications to Nonconvex Sweeping Process , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 S. S. Dragomir et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











