Korteweg-de Vries-Burgers equation on a segment
- 
							
								
							
								Elena I. Kaikina
							
							
															
									
									
									ekaikina@matmor.unam.mx
									
								
													
							
						 - 
							
								
							
								Leonardo Guardado-Zavala
							
							
															
									
									
									guardado@ps.itm.mx
									
								
													
							
						 - 
							
								
							
								Hector F. Ruiz-Paredes
							
							
															
									
									
									hruiz@sirio.tsemor.mx
									
								
													
							
						 - 
							
								
							
								S. Juarez Zirate
							
							
															
									
									
									sjzirate@matmor.unam.mx
									
								
													
							
						 
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000100005Abstract
We study the following initial-boundary value problem for the Korteweg-de Vries-Burgers equation on the interval (0, 1)

We prove that if the initial data u0 ∈ L2, then there exists a unique solution u ∈ C ([0, ∞) ; L2) ∪ C ((0,∞) ; H1) of the initial-boundary value problem (0.1). We also obtain the large time asymptotic of solution uniformly with respect to x ∈ (0, 1) as t → ∞.
Keywords
Similar Articles
- Ciprian G. Gal, Sorin G. Gal, On Fokker-Planck and linearized Korteweg-de Vries type equations with complex spatial variables , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
 - Nakao Hayashi, Pavel l. Naumkin, Existence of asymptotically free solutions for quadratic nonlinear Schrödinger equations in 3d , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
 - Martin Bohner, Julius Heim, Ailian Liu, Solow models on time scales , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
 - Bashir Ahmad, Amjad F. Albideewi, Sotiris K. Ntouyas, Ahmed Alsaedi, Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
 - William Greenberg, Michael Williams, Global Solutions of the Enskog Lattice Equation with Square Well Potential , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
 - M.O Korpusov, A. G. Sveschnikov, On blowing-up of solutions of Sobolev-type equation with source , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
 - Abdelouaheb Ardjouni, Ahcene Djoudi, Study of global asymptotic stability in nonlinear neutral dynamic equations on time scales , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
 - George Venkov, Small Data Global Existence and Scattering for the Mass-Critical Nonlinear Schrödinger Equation with Power Convolution in ℳ , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
 - John A.D. Appleby, James P. Gleeson, Alexandra Rodkina, Asymptotic Constancy and Stability in Nonautonomous Stochastic Differential Equations , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
 - S. H. Mousavizadegan, Matiur Rahman, Nonlinear Instability of Dispersive Waves , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
 
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
						










