An improved convergence and complexity analysis for the interpolatory Newton method
- 
							
								
							
								Ioannis K. Argyros
							
							
															
									
									
									iargyros@cameron.edu
									
								
													
							
						 
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000100013Abstract
We provide an improved compared to [5]–[7] local convergence analysis and complexity for the interpolatory Newton method for solving equations in a Banach space setting. The results are obtained using more precise error bounds than before [5]–[7] and the same hypotheses/computational cost.
Keywords
Most read articles by the same author(s)
- Ioannis K. Argyros, Saïd Hilout, Convergence conditions for the secant method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
 - Ioannis K. Argyros, Santhosh George, Extended domain for fifth convergence order schemes , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
 - Ioannis K. Argyros, Santhosh George, Ball comparison between Jarratt‘s and other fourth order method for solving equations , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
 - Ioannis K. Argyros, Saïd Hilout, On the semilocal convergence of Newton–type methods, when the derivative is not continuously invertible , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
 - Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
 
Similar Articles
- George A. Anastassiou, Caputo fractional Iyengar type Inequalities , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
 - Pradip Majhi, Debabrata Kar, Beta-almost Ricci solitons on Sasakian 3-manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
 - B. C. Das, Soumen De, B. N. Mandal, Wave propagation through a gap in a thin vertical wall in deep water , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
 - Ruchi Arora, Dharmendra Kumar, Ishita Jhamb, Avina Kaur Narang, Mathematical Modeling of Chikungunya Dynamics: Stability and Simulation , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
 - A. Kamal, T.I. Yassen, D-metric Spaces and Composition Operators Between Hyperbolic Weighted Family of Function Spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
 - G. S. Saluja, Fixed point theorems on cone \(S\)-metric spaces using implicit relation , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
 - Edoardo Ballico, Curves in low dimensional projective spaces with the lowest ranks , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
 - Luciano Souza, Wilson Rosa de O. Júnior, Cícero Carlos R. de Brito, Christophe Chesneau, Renan L. Fernandes, Tiago A. E. Ferreira, Tan-G class of trigonometric distributions and its applications , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
 - David Békollè, Khalil Ezzinbi, Samir Fatajou, Duplex Elvis Houpa Danga, Fritz Mbounja Béssémè, Convolutions in \((\mu,\nu)\)-pseudo-almost periodic and \((\mu,\nu)\)-pseudo-almost automorphic function spaces and applications to solve integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
 - Bashir Ahmad, Amjad F. Albideewi, Sotiris K. Ntouyas, Ahmed Alsaedi, Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
 
<< < 15 16 17 18 19 20 21 22 23 24 25 26 > >>
You may also start an advanced similarity search for this article.
Downloads
			Download data is not yet available.
		
	Published
																			2010-03-01
																	
				How to Cite
[1]
I. K. Argyros, “An improved convergence and complexity analysis for the interpolatory Newton method”, CUBO, vol. 12, no. 1, pp. 149–159, Mar. 2010.
Issue
Section
								Articles
							
						
						










