Small Data Global Existence and Scattering for the Mass-Critical Nonlinear Schrödinger Equation with Power Convolution in ℳ
-
George Venkov
gvenkov@tu-sofia.bg
Downloads
Abstract
The main purpose of the present paper is to consider the well-posedness of the L2-critical nonlinear Schrödinger equation of a Hartree type
ð’¾âˆ‚tψ + △ψ = (|x|−1 ∗ |ψ|8/3)ψ, (t, x) ∈ â„+ × â„3.
More precisely, we shall establish the local existence of solutions for initial data ψ0 in L2(â„3), as well as the existence of global solutions for small initial data. Moreover, we shall prove the existence of scattering operator.
Keywords
Similar Articles
- Ganga Ram Gautam, Sandra Pinelas, Manoj Kumar, Namrata Arya, Jaimala Bishnoi, On the solution of \(\mathcal{T}-\)controllable abstract fractional differential equations with impulsive effects , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- A.G. Ramm, One-dimensional inverse scattering and spectral problems , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Stanislas Ouaro, Well-Posedness results for anisotropic nonlinear elliptic equations with variable exponent and 𘓹 -data , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, Convergence conditions for the secant method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi, The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Leigh C. Becker, Uniformly Continuous 𿹠Solutions of Volterra Equations and Global Asymptotic Stability , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- J. Henderson, S.K. Ntouyas, I.K. Purnaras, Positive Solutions for Systems of Three-point Nonlinear Boundary Value Problems with Deviating Arguments , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- N. S. Gopal, J. M. Jonnalagadda, Positive solutions of nabla fractional boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Carl Chiarella, Ferenc Szidarovszky, A Multiobjective Model of Oligopolies under Uncertainty , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Lolimar Diaz, Raúl Naulin, Discrete Systems with Advanced Argument , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
<< < 8 9 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.











