Small Data Global Existence and Scattering for the Mass-Critical Nonlinear Schrödinger Equation with Power Convolution in ℳ
-
George Venkov
gvenkov@tu-sofia.bg
Downloads
Abstract
The main purpose of the present paper is to consider the well-posedness of the L2-critical nonlinear Schrödinger equation of a Hartree type
ð’¾âˆ‚tψ + △ψ = (|x|−1 ∗ |ψ|8/3)ψ, (t, x) ∈ â„+ × â„3.
More precisely, we shall establish the local existence of solutions for initial data ψ0 in L2(â„3), as well as the existence of global solutions for small initial data. Moreover, we shall prove the existence of scattering operator.
Keywords
Similar Articles
- Ricardo Castro Santis, Fernando Córdova-Lepe, Ana Belén Venegas, Biorreactor de fermentación con tasa estocástica de consumo , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- M. Angélica Astaburuaga, Víctor H. Cortés, Claudio Fernández, Rafael Del Río, Estabilidad espectral y resonancias para perturbaciones de rango finito y singulares , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Bach Do, G. Stacey Staples, Zeros of cubic polynomials in zeon algebra , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
- Raoudha Laffi, Some inequalities associated with a partial differential operator , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
- Fethi Soltani, Maher Aloui, Hausdorff operators associated with the linear canonical Sturm-Liouville transform , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
You may also start an advanced similarity search for this article.










