Zeros of cubic polynomials in zeon algebra
-
Bach Do
do.bach.35a@st.kyoto-u.ac.jp
-
G. Stacey Staples
sstaple@siue.edu
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2703.553Abstract
It is well known that every cubic polynomial with complex coefficients has three not necessarily distinct complex zeros. In this paper, zeros of cubic polynomials over complex zeons are considered. In particular, a monic cubic polynomial with zeon coefficients may have three spectrally simple zeros, uncountably many zeros, or no zeros at all. A classification of zeros is developed based on an extension of the cubic discriminant to zeon polynomials. In indeterminate cases, sufficient conditions are provided for existence of spectrally nonsimple zeon zeros. We also show that when considering zeros of cubic polynomials over the finite-dimensional complex zeon algebra \(\mathcal{C}\mathcal{3}_2\), there are no indeterminate cases.
Keywords
Mathematics Subject Classification:
L. M. Dollar and G. S. Staples, “Zeon roots,” Adv. Appl. Clifford Algebr., vol. 27, no. 2, pp. 1133–1145, 2017, doi: 10.1007/s00006-016-0732-4.
P. Feinsilver, “Zeon algebra, Fock space, and Markov chains,” Commun. Stoch. Anal., vol. 2, no. 2, pp. 263–275, 2008, doi: 10.31390/cosa.2.2.06.
E. Haake and G. S. Staples, “Zeros of zeon polynomials and the zeon quadratic formula,” Adv. Appl. Clifford Algebr., vol. 29, no. 1, 2019, Art. ID 21, doi: 10.1007/s00006-019-0938-3.
T. Mansour and M. Schork, “On the differential equation of first and second order in the zeon algebra,” Adv. Appl. Clifford Algebr., vol. 31, no. 2, 2021, Art. ID 21, doi: 10.1007/s00006-021-01126-7.
A. F. Neto, “Higher order derivatives of trigonometric functions, Stirling numbers of the second kind, and Zeon algebra,” J. Integer Seq., vol. 17, no. 9, 2014, Art. 14.9.3.
A. F. Neto, “Carlitz’s identity for the Bernoulli numbers and Zeon algebra,” J. Integer Seq., vol. 18, no. 5, 2015, Art. ID 15.5.6.
A. F. Neto, “A note on a theorem of Guo, Mező, and Qi,” J. Integer Seq., vol. 19, no. 4, 2016, Art. ID 16.4.8.
A. F. Neto and P. H. R. dos Anjos, “Zeon algebra and combinatorial identities,” SIAM Rev., vol. 56, no. 2, pp. 353–370, 2014, doi: 10.1137/130906684.
R. Schott and G. S. Staples, Operator calculus on graphs. 2012, doi: 10.1142/p843. Imperial College Press, London,
T. Shifrin, Abstract algebra: A geometric approach. Prentice Hall Englewood Cliffs, New York, NY, 1995.
G. S. Staples, “Spectrally simple zeros of zeon polynomials,” Adv. Appl. Clifford Algebr., vol. 31, no. 4, 2021, Art. ID 66, doi: 10.1007/s00006-021-01167-y.
G. S. Staples, “Zeon matrix inverses and the zeon combinatorial Laplacian,” Adv. Appl. Clifford Algebr., vol. 31, no. 3, 2021, Art. ID 40, doi: 10.1007/s00006-021-01152-5.
G. S. Staples, Clifford algebras and zeons. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2020.
Similar Articles
- Robert M. Yamaleev, Evolutionary method of construction of solutions of polynomials and related generalized dynamics , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Xu You, Approximation and inequalities for the factorial function related to the Burnside’s formula , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Ovidiu Furdui, Alina Sîntămărian, Cubic and quartic series with the tail of \(\ln 2\) , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Nenad Ujevi´c, Error Inequalities for a Taylor-like Formula , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- Ahmed Ali Atash, Maisoon Ahmed Kulib, Extension of exton's hypergeometric function \(K_{16}\) , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Hugo Leiva, Jesús Matute, Nelson Merentes, José Sánchez, On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Boukhemis Ammar, On the classical 2−orthogonal polynomials sequences of Sheffer-Meixner type , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Pierpaolo Natalini, Paolo Emilio Ricci, Bell Polynomials and some of their Applications , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Rémi Léandre, A Girsanov formula associated to a big order pseudo-differential operator , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Abdón Catalán, Roberto Costa, Acerca de álgebras báricas satisfaciendo \((x^2)^2 = w(x)^3x *\) , CUBO, A Mathematical Journal: No. 8 (1992): CUBO, Revista de Matemática
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 B. Do et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











