Zeros of cubic polynomials in zeon algebra
-
Bach Do
do.bach.35a@st.kyoto-u.ac.jp
-
G. Stacey Staples
sstaple@siue.edu
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2703.553Abstract
It is well known that every cubic polynomial with complex coefficients has three not necessarily distinct complex zeros. In this paper, zeros of cubic polynomials over complex zeons are considered. In particular, a monic cubic polynomial with zeon coefficients may have three spectrally simple zeros, uncountably many zeros, or no zeros at all. A classification of zeros is developed based on an extension of the cubic discriminant to zeon polynomials. In indeterminate cases, sufficient conditions are provided for existence of spectrally nonsimple zeon zeros. We also show that when considering zeros of cubic polynomials over the finite-dimensional complex zeon algebra \(\mathcal{C}\mathcal{3}_2\), there are no indeterminate cases.
Keywords
Mathematics Subject Classification:
L. M. Dollar and G. S. Staples, “Zeon roots,” Adv. Appl. Clifford Algebr., vol. 27, no. 2, pp. 1133–1145, 2017, doi: 10.1007/s00006-016-0732-4.
P. Feinsilver, “Zeon algebra, Fock space, and Markov chains,” Commun. Stoch. Anal., vol. 2, no. 2, pp. 263–275, 2008, doi: 10.31390/cosa.2.2.06.
E. Haake and G. S. Staples, “Zeros of zeon polynomials and the zeon quadratic formula,” Adv. Appl. Clifford Algebr., vol. 29, no. 1, 2019, Art. ID 21, doi: 10.1007/s00006-019-0938-3.
T. Mansour and M. Schork, “On the differential equation of first and second order in the zeon algebra,” Adv. Appl. Clifford Algebr., vol. 31, no. 2, 2021, Art. ID 21, doi: 10.1007/s00006-021-01126-7.
A. F. Neto, “Higher order derivatives of trigonometric functions, Stirling numbers of the second kind, and Zeon algebra,” J. Integer Seq., vol. 17, no. 9, 2014, Art. 14.9.3.
A. F. Neto, “Carlitz’s identity for the Bernoulli numbers and Zeon algebra,” J. Integer Seq., vol. 18, no. 5, 2015, Art. ID 15.5.6.
A. F. Neto, “A note on a theorem of Guo, Mező, and Qi,” J. Integer Seq., vol. 19, no. 4, 2016, Art. ID 16.4.8.
A. F. Neto and P. H. R. dos Anjos, “Zeon algebra and combinatorial identities,” SIAM Rev., vol. 56, no. 2, pp. 353–370, 2014, doi: 10.1137/130906684.
R. Schott and G. S. Staples, Operator calculus on graphs. 2012, doi: 10.1142/p843. Imperial College Press, London,
T. Shifrin, Abstract algebra: A geometric approach. Prentice Hall Englewood Cliffs, New York, NY, 1995.
G. S. Staples, “Spectrally simple zeros of zeon polynomials,” Adv. Appl. Clifford Algebr., vol. 31, no. 4, 2021, Art. ID 66, doi: 10.1007/s00006-021-01167-y.
G. S. Staples, “Zeon matrix inverses and the zeon combinatorial Laplacian,” Adv. Appl. Clifford Algebr., vol. 31, no. 3, 2021, Art. ID 40, doi: 10.1007/s00006-021-01152-5.
G. S. Staples, Clifford algebras and zeons. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2020.
Similar Articles
- Kunio Yoshino, Analytic continuation and applications of eigenvalues of Daubechies‘ localization operator , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Georgi Raikov, Spectral Shift Function for Schr¨odinger Operators in Constant Magnetic Fields , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Wolfgang Spr¨ossig, Quaternionic analysis and Maxwell‘s equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- George A. Anastassiou, Fuzzy Taylor Formulae , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Helmuth R. Malonek, Dixan Peña, Frank Sommen, Fischer decomposition by inframonogenic functions , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Volodymyr Sushch, Green Function for a Two-Dimensional Discrete Laplace-Beltrami Operator , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Valery A. Gaiko, Limit Cycles of Li´enard-Type Dynamical Systems , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Shunsuke Kaji, The Extension of the Formula by Dupire , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- L. P. Castro, A. S. Silva, Fredholm property of matrix Wiener-Hopf plus and minus Hankel operators with semi-almost periodic symbols , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- S.V. Ludkovsky, Wrap groups of fiber bundles and their structure , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 B. Do et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











