Zeros of cubic polynomials in zeon algebra

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2703.553

Abstract

It is well known that every cubic polynomial with complex coefficients has three not necessarily distinct complex zeros. In this paper, zeros of cubic polynomials over complex zeons are considered. In particular, a monic cubic polynomial with zeon coefficients may have three spectrally simple zeros, uncountably many zeros, or no zeros at all. A classification of zeros is developed based on an extension of the cubic discriminant to zeon polynomials. In indeterminate cases, sufficient conditions are provided for existence of spectrally nonsimple zeon zeros. We also show that when considering zeros of cubic polynomials over the finite-dimensional complex zeon algebra \(\mathcal{C}\mathcal{3}_2\), there are no indeterminate cases.

Keywords

Zeons , polynomials , cubic formula , symbolic computation

Mathematics Subject Classification:

13B25 , 05E40 , 81R05
  • Pages: 553–579
  • Date Published: 2025-11-21
  • In Press

L. M. Dollar and G. S. Staples, “Zeon roots,” Adv. Appl. Clifford Algebr., vol. 27, no. 2, pp. 1133–1145, 2017, doi: 10.1007/s00006-016-0732-4.

P. Feinsilver, “Zeon algebra, Fock space, and Markov chains,” Commun. Stoch. Anal., vol. 2, no. 2, pp. 263–275, 2008, doi: 10.31390/cosa.2.2.06.

E. Haake and G. S. Staples, “Zeros of zeon polynomials and the zeon quadratic formula,” Adv. Appl. Clifford Algebr., vol. 29, no. 1, 2019, Art. ID 21, doi: 10.1007/s00006-019-0938-3.

T. Mansour and M. Schork, “On the differential equation of first and second order in the zeon algebra,” Adv. Appl. Clifford Algebr., vol. 31, no. 2, 2021, Art. ID 21, doi: 10.1007/s00006-021-01126-7.

A. F. Neto, “Higher order derivatives of trigonometric functions, Stirling numbers of the second kind, and Zeon algebra,” J. Integer Seq., vol. 17, no. 9, 2014, Art. 14.9.3.

A. F. Neto, “Carlitz’s identity for the Bernoulli numbers and Zeon algebra,” J. Integer Seq., vol. 18, no. 5, 2015, Art. ID 15.5.6.

A. F. Neto, “A note on a theorem of Guo, Mező, and Qi,” J. Integer Seq., vol. 19, no. 4, 2016, Art. ID 16.4.8.

A. F. Neto and P. H. R. dos Anjos, “Zeon algebra and combinatorial identities,” SIAM Rev., vol. 56, no. 2, pp. 353–370, 2014, doi: 10.1137/130906684.

R. Schott and G. S. Staples, Operator calculus on graphs. 2012, doi: 10.1142/p843. Imperial College Press, London,

T. Shifrin, Abstract algebra: A geometric approach. Prentice Hall Englewood Cliffs, New York, NY, 1995.

G. S. Staples, “Spectrally simple zeros of zeon polynomials,” Adv. Appl. Clifford Algebr., vol. 31, no. 4, 2021, Art. ID 66, doi: 10.1007/s00006-021-01167-y.

G. S. Staples, “Zeon matrix inverses and the zeon combinatorial Laplacian,” Adv. Appl. Clifford Algebr., vol. 31, no. 3, 2021, Art. ID 40, doi: 10.1007/s00006-021-01152-5.

G. S. Staples, Clifford algebras and zeons. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2020.

Downloads

Download data is not yet available.

Published

2025-11-21

How to Cite

[1]
B. Do and G. S. Staples, “Zeros of cubic polynomials in zeon algebra”, CUBO, pp. 553–579, Nov. 2025.

Issue

Section

Articles