Estabilidad espectral y resonancias para perturbaciones de rango finito y singulares
Spectral stability and resonances for finite rank and singular perturbations
-
M. Angélica Astaburuaga
mastabur@uc.cl
-
Víctor H. Cortés
vcortes@uc.cl
-
Claudio Fernández
cfernand@mat.uc.cl
-
Rafael Del Río
delriomagia@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2702.505Abstract
In these notes, we summarize a series of papers devoted to perturbations of operators of several classes, among them differential operators. The articles mentioned before, study spectral properties, with special emphasis on the stability of the eigenvalues and the absence of a certain singular spectrum. These perturbations are of a different nature, including finite rank and the singular case. We also characterize and prove the resonance phenomenon from a dynamical point of view, that is, the existence of states with long life and for which the survival amplitude has an almost exponential behavior. In addition, we include a discussion about several open problems in the area.
Resumen
En estas notas resumimos una serie de artículos dedicados a perturbaciones de operadores de variadas clases, entre ellos operadores diferenciales. En dichos artículos se estudian propiedades espectrales, con énfasis en la estabilidad de los valores propios y la ausencia de cierto espectro singular. Estas perturbaciones son de diferente naturaleza, incluyendo rango finito y el caso singular. También se caracteriza y demuestra el fenómeno de resonancia desde el punto de vista dinámico, es decir, la existencia de estados que tienen larga vida y para los cuales la amplitud de sobrevivencia tiene un comportamiento casi exponencial. Además se incluye una discusión de acerca de varios problemas abiertos en el área.
Keywords
Mathematics Subject Classification:
J. Asch, M. A. Astaburuaga, P. Briet, V. H. Cortés, P. Duclos, y C. Fernández, “Sojourn time for rank one perturbations,” J. Math. Phys., vol. 47, no. 3, 2006, Art. ID 033501.
J. Asch, O. Bourget, V. H. Cortés, y C. Fernández, “Lower bounds for sojourn time in a simple shape resonance model,” in Spectral theory and mathematical physics, ser. Oper. Theory Adv. Appl. Birkhäuser/Springer, [Cham], 2016, vol. 254, pp. 1–9.
M. Assal, O. Bourget, P. Miranda, y D. Sambou, “Resonances for quasi-one-dimensional discrete schrödinger operators,” 2022, arXiv:2203.01352.
M. A. Astaburuaga, V. H. Cortés, C. Fernández, y R. Del Río, “Singular rank one perturbations,” J. Math. Phys., vol. 63, no. 2, 2022, Art. ID 023502, doi: 10.1063/5.0061250.
M. A. Astaburuaga, V. H. Cortés, C. Fernández, y R. Del Río, “Resonances and stability of absolutely continuous spectrum for finite rank perturbations,” Pure Appl. Funct. Anal., vol. 9, no. 4, pp. 899–914, 2024.
M. A. Astaburuaga, P. Covian, y C. Fernández, “Behavior of the survival probability in some one-dimensional problems,” J. Math. Phys., vol. 43, no. 10, pp. 4571–4581, 2002, doi: 10.1063/1.1500426.
O. Bourget, V. H. Cortés, R. Del Río, y C. Fernández, “Resonances under rank-one perturbations,” J. Math. Phys., vol. 58, no. 9, 2017, Art. ID 093502, doi: 10.1063/1.4989882.
L. Cattaneo, G. M. Graf, y W. Hunziker, “A general resonance theory based on Mourre’s inequality,” Ann. Henri Poincaré, vol. 7, no. 3, pp. 583–601, 2006, doi: 10.1007/s00023-005-0261-5.
E. B. Davies, “Resonances, spectral concentration and exponential decay,” Lett. Math. Phys., vol. 1, no. 1, pp. 31–35, 1975/76, doi: 10.1007/BF00405583.
W. F. Donoghue, Jr., “On the perturbation of spectra,” Comm. Pure Appl. Math., vol. 18, pp. 559–579, 1965, doi: 10.1002/cpa.3160180402.
P. D. Hislop e I. M. Sigal, Introduction to spectral theory, ser. Applied Mathematical Sciences. Springer-Verlag, New York, 1996, vol. 113.
J. S. Howland, “The Livsic matrix in perturbation theory,” J. Math. Anal. Appl., vol. 50, pp. 415–437, 1975.
A. Jensen, “Lecture notes on Schrödinger operators: Resonances arising from a perturbed eigenvalue,” Aalborg, Denmark, 2010.
T. Kato, Perturbation Theory for Linear Operators, 2nd ed., ser. Classics in Mathematics. Berlin, Heidelberg: Springer-Verlag, 1995.
R. Lavine, “Spectral densities and Sojourn times,” in Atomic Scattering Theory, J. Nuttall, Ed. London, Ontario: University of Western Ontario Press, 1978, pp. 45–61.
E. Mourre, “Absence of singular continuous spectrum for certain self adjoint operators,” Comm. Math. Phys., vol. 78, no. 3, pp. 391–408, 1980/81.
B. Simon, “Resonances and complex scaling: Arigorous over view,” Int. J. Quantum Chemistry, vol. 14, pp. 529–542, 1978, doi: 10.1002/qua.560140415.
B. Simon, “Spectral analysis of rank one perturbations and applications,” in Mathematical quantum theory. II. Schrödinger operators (Vancouver, BC, 1993), ser. CRM Proc. Lecture Notes. Amer. Math. Soc., Providence, RI, 1995, vol. 8, pp. 109–149.
Most read articles by the same author(s)
- Rafael del Rio, Asaf L. Franco, Jose A. Lara, An approach to F. Riesz representation Theorem , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
Similar Articles
- J. B. Nation, Congruences of finite semidistributive lattices , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Andrew Craig, Miroslav Haviar, Klarise Marais, Dual digraphs of finite meet-distributive and modular lattices , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Jean-François Bony, Vincent Bruneau, Philippe Briet, Georgi Raikov, Resonances and SSF Singularities for Magnetic Schrödinger Operators , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Mouez Dimassi, Maher Zerzeri, Spectral shift function for slowly varying perturbation of periodic Schrödinger operators , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Takahiro Sudo, Spectral Rank for ð¶*-Algebras , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Peter D. Hislop, Fundamentals of scattering theory and resonances in quantum mechanics , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Yaroslav Kurylev, Matti Lassas, Multidimensional Gel'fand Inverse Boundary Spectral Problem: Uniqueness and Stability , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- Akio Matsumoto, Ferenc Szidarovszky, An elementary study of a class of dynamic systems with two time delays , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Leigh C. Becker, T. A. Burton, Jensen's Inequality and Liapunov's Direct Method , CUBO, A Mathematical Journal: Vol. 6 No. 3 (2004): CUBO, A Mathematical Journal
- Sahar M. A. Maqbol, R. S. Jain, B. S. Reddy, On stability of nonlocal neutral stochastic integro differential equations with random impulses and Poisson jumps , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 M. A. Astaburuaga et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











