Estabilidad espectral y resonancias para perturbaciones de rango finito y singulares

Spectral stability and resonances for finite rank and singular perturbations

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2702.505

Abstract

In these notes, we summarize a series of papers devoted to perturbations of operators of several classes, among them differential operators. The articles mentioned before, study spectral properties, with special emphasis on the stability of the eigenvalues and the absence of a certain singular spectrum. These perturbations are of a different nature, including finite rank and the singular case. We also characterize and prove the resonance phenomenon from a dynamical point of view, that is, the existence of states with long life and for which the survival amplitude has an almost exponential behavior. In addition, we include a discussion about several open problems in the area.

Resumen

En estas notas resumimos una serie de artículos dedicados a perturbaciones de operadores de variadas clases, entre ellos operadores diferenciales. En dichos artículos se estudian propiedades espectrales, con énfasis en la estabilidad de los valores propios y la ausencia de cierto espectro singular. Estas perturbaciones son de diferente naturaleza, incluyendo rango finito y el caso singular. También se caracteriza y demuestra el fenómeno de resonancia desde el punto de vista dinámico, es decir, la existencia de estados que tienen larga vida y para los cuales la amplitud de sobrevivencia tiene un comportamiento casi exponencial. Además se incluye una discusión de acerca de varios problemas abiertos en el área.

Keywords

Resonances , spectral stability , finite rank perturbations

Mathematics Subject Classification:

81Q10 , 47A35 , 47B47
  • Pages: 505–522
  • Date Published: 2025-10-30
  • In Press

J. Asch, M. A. Astaburuaga, P. Briet, V. H. Cortés, P. Duclos, y C. Fernández, “Sojourn time for rank one perturbations,” J. Math. Phys., vol. 47, no. 3, 2006, Art. ID 033501.

J. Asch, O. Bourget, V. H. Cortés, y C. Fernández, “Lower bounds for sojourn time in a simple shape resonance model,” in Spectral theory and mathematical physics, ser. Oper. Theory Adv. Appl. Birkhäuser/Springer, [Cham], 2016, vol. 254, pp. 1–9.

M. Assal, O. Bourget, P. Miranda, y D. Sambou, “Resonances for quasi-one-dimensional discrete schrödinger operators,” 2022, arXiv:2203.01352.

M. A. Astaburuaga, V. H. Cortés, C. Fernández, y R. Del Río, “Singular rank one perturbations,” J. Math. Phys., vol. 63, no. 2, 2022, Art. ID 023502, doi: 10.1063/5.0061250.

M. A. Astaburuaga, V. H. Cortés, C. Fernández, y R. Del Río, “Resonances and stability of absolutely continuous spectrum for finite rank perturbations,” Pure Appl. Funct. Anal., vol. 9, no. 4, pp. 899–914, 2024.

M. A. Astaburuaga, P. Covian, y C. Fernández, “Behavior of the survival probability in some one-dimensional problems,” J. Math. Phys., vol. 43, no. 10, pp. 4571–4581, 2002, doi: 10.1063/1.1500426.

O. Bourget, V. H. Cortés, R. Del Río, y C. Fernández, “Resonances under rank-one perturbations,” J. Math. Phys., vol. 58, no. 9, 2017, Art. ID 093502, doi: 10.1063/1.4989882.

L. Cattaneo, G. M. Graf, y W. Hunziker, “A general resonance theory based on Mourre’s inequality,” Ann. Henri Poincaré, vol. 7, no. 3, pp. 583–601, 2006, doi: 10.1007/s00023-005-0261-5.

E. B. Davies, “Resonances, spectral concentration and exponential decay,” Lett. Math. Phys., vol. 1, no. 1, pp. 31–35, 1975/76, doi: 10.1007/BF00405583.

W. F. Donoghue, Jr., “On the perturbation of spectra,” Comm. Pure Appl. Math., vol. 18, pp. 559–579, 1965, doi: 10.1002/cpa.3160180402.

P. D. Hislop e I. M. Sigal, Introduction to spectral theory, ser. Applied Mathematical Sciences. Springer-Verlag, New York, 1996, vol. 113.

J. S. Howland, “The Livsic matrix in perturbation theory,” J. Math. Anal. Appl., vol. 50, pp. 415–437, 1975.

A. Jensen, “Lecture notes on Schrödinger operators: Resonances arising from a perturbed eigenvalue,” Aalborg, Denmark, 2010.

T. Kato, Perturbation Theory for Linear Operators, 2nd ed., ser. Classics in Mathematics. Berlin, Heidelberg: Springer-Verlag, 1995.

R. Lavine, “Spectral densities and Sojourn times,” in Atomic Scattering Theory, J. Nuttall, Ed. London, Ontario: University of Western Ontario Press, 1978, pp. 45–61.

E. Mourre, “Absence of singular continuous spectrum for certain self adjoint operators,” Comm. Math. Phys., vol. 78, no. 3, pp. 391–408, 1980/81.

B. Simon, “Resonances and complex scaling: Arigorous over view,” Int. J. Quantum Chemistry, vol. 14, pp. 529–542, 1978, doi: 10.1002/qua.560140415.

B. Simon, “Spectral analysis of rank one perturbations and applications,” in Mathematical quantum theory. II. Schrödinger operators (Vancouver, BC, 1993), ser. CRM Proc. Lecture Notes. Amer. Math. Soc., Providence, RI, 1995, vol. 8, pp. 109–149.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2025-10-30

How to Cite

[1]
M. A. Astaburuaga, V. H. Cortés, C. Fernández, and R. Del Río, “Estabilidad espectral y resonancias para perturbaciones de rango finito y singulares: Spectral stability and resonances for finite rank and singular perturbations”, CUBO, pp. 505–522, Oct. 2025.

Issue

Section

Surveys

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.