Estabilidad espectral y resonancias para perturbaciones de rango finito y singulares
Spectral stability and resonances for finite rank and singular perturbations
-
M. Angélica Astaburuaga
mastabur@uc.cl
-
Víctor H. Cortés
vcortes@uc.cl
-
Claudio Fernández
cfernand@mat.uc.cl
-
Rafael Del Río
delriomagia@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2702.505Abstract
In these notes, we summarize a series of papers devoted to perturbations of operators of several classes, among them differential operators. The articles mentioned before, study spectral properties, with special emphasis on the stability of the eigenvalues and the absence of a certain singular spectrum. These perturbations are of a different nature, including finite rank and the singular case. We also characterize and prove the resonance phenomenon from a dynamical point of view, that is, the existence of states with long life and for which the survival amplitude has an almost exponential behavior. In addition, we include a discussion about several open problems in the area.
Resumen
En estas notas resumimos una serie de artículos dedicados a perturbaciones de operadores de variadas clases, entre ellos operadores diferenciales. En dichos artículos se estudian propiedades espectrales, con énfasis en la estabilidad de los valores propios y la ausencia de cierto espectro singular. Estas perturbaciones son de diferente naturaleza, incluyendo rango finito y el caso singular. También se caracteriza y demuestra el fenómeno de resonancia desde el punto de vista dinámico, es decir, la existencia de estados que tienen larga vida y para los cuales la amplitud de sobrevivencia tiene un comportamiento casi exponencial. Además se incluye una discusión de acerca de varios problemas abiertos en el área.
Keywords
Mathematics Subject Classification:
J. Asch, M. A. Astaburuaga, P. Briet, V. H. Cortés, P. Duclos, y C. Fernández, “Sojourn time for rank one perturbations,” J. Math. Phys., vol. 47, no. 3, 2006, Art. ID 033501.
J. Asch, O. Bourget, V. H. Cortés, y C. Fernández, “Lower bounds for sojourn time in a simple shape resonance model,” in Spectral theory and mathematical physics, ser. Oper. Theory Adv. Appl. Birkhäuser/Springer, [Cham], 2016, vol. 254, pp. 1–9.
M. Assal, O. Bourget, P. Miranda, y D. Sambou, “Resonances for quasi-one-dimensional discrete schrödinger operators,” 2022, arXiv:2203.01352.
M. A. Astaburuaga, V. H. Cortés, C. Fernández, y R. Del Río, “Singular rank one perturbations,” J. Math. Phys., vol. 63, no. 2, 2022, Art. ID 023502, doi: 10.1063/5.0061250.
M. A. Astaburuaga, V. H. Cortés, C. Fernández, y R. Del Río, “Resonances and stability of absolutely continuous spectrum for finite rank perturbations,” Pure Appl. Funct. Anal., vol. 9, no. 4, pp. 899–914, 2024.
M. A. Astaburuaga, P. Covian, y C. Fernández, “Behavior of the survival probability in some one-dimensional problems,” J. Math. Phys., vol. 43, no. 10, pp. 4571–4581, 2002, doi: 10.1063/1.1500426.
O. Bourget, V. H. Cortés, R. Del Río, y C. Fernández, “Resonances under rank-one perturbations,” J. Math. Phys., vol. 58, no. 9, 2017, Art. ID 093502, doi: 10.1063/1.4989882.
L. Cattaneo, G. M. Graf, y W. Hunziker, “A general resonance theory based on Mourre’s inequality,” Ann. Henri Poincaré, vol. 7, no. 3, pp. 583–601, 2006, doi: 10.1007/s00023-005-0261-5.
E. B. Davies, “Resonances, spectral concentration and exponential decay,” Lett. Math. Phys., vol. 1, no. 1, pp. 31–35, 1975/76, doi: 10.1007/BF00405583.
W. F. Donoghue, Jr., “On the perturbation of spectra,” Comm. Pure Appl. Math., vol. 18, pp. 559–579, 1965, doi: 10.1002/cpa.3160180402.
P. D. Hislop e I. M. Sigal, Introduction to spectral theory, ser. Applied Mathematical Sciences. Springer-Verlag, New York, 1996, vol. 113.
J. S. Howland, “The Livsic matrix in perturbation theory,” J. Math. Anal. Appl., vol. 50, pp. 415–437, 1975.
A. Jensen, “Lecture notes on Schrödinger operators: Resonances arising from a perturbed eigenvalue,” Aalborg, Denmark, 2010.
T. Kato, Perturbation Theory for Linear Operators, 2nd ed., ser. Classics in Mathematics. Berlin, Heidelberg: Springer-Verlag, 1995.
R. Lavine, “Spectral densities and Sojourn times,” in Atomic Scattering Theory, J. Nuttall, Ed. London, Ontario: University of Western Ontario Press, 1978, pp. 45–61.
E. Mourre, “Absence of singular continuous spectrum for certain self adjoint operators,” Comm. Math. Phys., vol. 78, no. 3, pp. 391–408, 1980/81.
B. Simon, “Resonances and complex scaling: Arigorous over view,” Int. J. Quantum Chemistry, vol. 14, pp. 529–542, 1978, doi: 10.1002/qua.560140415.
B. Simon, “Spectral analysis of rank one perturbations and applications,” in Mathematical quantum theory. II. Schrödinger operators (Vancouver, BC, 1993), ser. CRM Proc. Lecture Notes. Amer. Math. Soc., Providence, RI, 1995, vol. 8, pp. 109–149.
Most read articles by the same author(s)
- Rafael del Rio, Asaf L. Franco, Jose A. Lara, An approach to F. Riesz representation Theorem , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
Similar Articles
- Akio Matsumoto, Ferenc Szidarovszky, An Elementary Study of a Class of Dynamic Systems with Single Time Delay , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- Robert Auffarth, Giancarlo Lucchini Arteche, Pablo Quezada, Smooth quotients of abelian surfaces by finite groups that fix the origin , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Junwei Liu, Chuanyi Zhang, Existence and stability of almost periodic solutions to impulsive stochastic differential equations , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Eduardo Montenegro, Graph with given automorphism group and given chromatic index , CUBO, A Mathematical Journal: No. 7 (1991): CUBO, Revista de Matemática
- M. Arunkumar, Generalized Ulam - Hyers Stability of Derivations of a AQ - Functional Equation , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Bapurao C. Dhage, John R. Graef, Shyam B. Dhage, Existence, stability and global attractivity results for nonlinear Riemann-Liouville fractional differential equations , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Vicente Muñoz, Leray-Serre Spectral Sequence for Quasi-Fibrations , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Georgi Raikov, Spectral Shift Function for Schr¨odinger Operators in Constant Magnetic Fields , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Abderrahim Guerfi, Abdelouaheb Ardjouni, Existence, uniqueness, continuous dependence and Ulam stability of mild solutions for an iterative fractional differential equation , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Vjacheslav A. Yurko, Recovering Higher-order Differential Operators on Star-type Graphs from Spectra , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 M. A. Astaburuaga et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











