Smooth quotients of abelian surfaces by finite groups that fix the origin
- Robert Auffarth rfauffar@uchile.cl
- Giancarlo Lucchini Arteche luco@uchile.cl
- Pablo Quezada psquezada@uc.cl
Downloads
DOI:
https://doi.org/10.4067/S0719-06462022000100037Abstract
Let \(A\) be an abelian surface and let \(G\) be a finite group of automorphisms of \(A\) fixing the origin. Assume that the analytic representation of \(G\) is irreducible. We give a classification of the pairs \((A,G)\) such that the quotient \(A/G\) is smooth. In particular, we prove that \(A=E^2\) with \(E\) an elliptic curve and that \(A/G\simeq\mathbb P^2\) in all cases. Moreover, for fixed \(E\), there are only finitely many pairs \((E^2,G)\) up to isomorphism. This fills a small gap in the literature and completes the classification of smooth quotients of abelian varieties by finite groups fixing the origin started by the first two authors.
Keywords
R. Auffarth, “A note on Galois embeddings of abelian varieties”, Manuscripta Math., vol. 154, no. 3–4, pp. 279–284, 2017.
R. Auffarth and G. Lucchini Arteche, “Smooth quotients of abelian varieties by finite groups”, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5), vol. 21, pp. 673–694, 2020.
V. Popov. Discrete complex reflection groups, Communications of the Mathematical Institute, Rijksuniversiteit Utrecht, 15, Netherland: Rijksuniversiteit Utrecht, 1982.
G. C. Shephard and J. A. Todd, “Finite unitary reflection groups”. Canad. J. Math., vol. 6, pp. 274–304, 1954.
O. V. Å varcman, “A Chevalley theorem for complex crystallographic groups that are generated by mappings in the affine space C^2” (Russian), Uspekhi Mat. Nauk, vol. 34, no.1(205), pp. 249–250, 1979.
S. Tokunaga and M. Yoshida.“Complex crystallographic groups. I.”, J. Math. Soc. Japan, vol. 34, no. 4, pp. 581–593, 1982.
H. Yoshihara, “Galois embedding of algebraic variety and its application to abelian surface”, Rend. Semin. Mat. Univ. Padova, vol. 117, pp. 69–85, 2007.
Similar Articles
- Gina Lusares, Armando Rodado Amaris, Parametrised databases of surfaces based on Teichmüller theory , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
- Saharon Shelah, Nɴ-free abelian group with no non-zero homomorphism to ℤ , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- Oliver Bültel, On the supersingular loci of quaternionic Siegel space , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- Francisco Brito, Many-Ended Complete Minimal Surfaces Between Two Parallel Planes in ℳ , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- David M. Arnold, An Introduction to the Structure of Abelian Groups , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- Peter Danchev, Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Rubén A. Hidalgo, A short note on ð‘€-symmetric hyperelliptic Riemann surfaces * , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Erika Griechisch, Some Theoretical Issues Concerning Hamming Coding , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Bruno Aguiló Vidal, Free dihedral actions on abelian varieties , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Eduardo Montenegro, Hamiltonety and automorphisms group of graph preserved by substitution , CUBO, A Mathematical Journal: No. 11 (1995): CUBO, Revista de Matemática
You may also start an advanced similarity search for this article.