Smooth quotients of abelian surfaces by finite groups that fix the origin
-
Robert Auffarth
rfauffar@uchile.cl
-
Giancarlo Lucchini Arteche
luco@uchile.cl
-
Pablo Quezada
psquezada@uc.cl
Downloads
DOI:
https://doi.org/10.4067/S0719-06462022000100037Abstract
Let \(A\) be an abelian surface and let \(G\) be a finite group of automorphisms of \(A\) fixing the origin. Assume that the analytic representation of \(G\) is irreducible. We give a classification of the pairs \((A,G)\) such that the quotient \(A/G\) is smooth. In particular, we prove that \(A=E^2\) with \(E\) an elliptic curve and that \(A/G\simeq\mathbb P^2\) in all cases. Moreover, for fixed \(E\), there are only finitely many pairs \((E^2,G)\) up to isomorphism. This fills a small gap in the literature and completes the classification of smooth quotients of abelian varieties by finite groups fixing the origin started by the first two authors.
Keywords
R. Auffarth, “A note on Galois embeddings of abelian varieties”, Manuscripta Math., vol. 154, no. 3–4, pp. 279–284, 2017.
R. Auffarth and G. Lucchini Arteche, “Smooth quotients of abelian varieties by finite groups”, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5), vol. 21, pp. 673–694, 2020.
V. Popov. Discrete complex reflection groups, Communications of the Mathematical Institute, Rijksuniversiteit Utrecht, 15, Netherland: Rijksuniversiteit Utrecht, 1982.
G. C. Shephard and J. A. Todd, “Finite unitary reflection groups”. Canad. J. Math., vol. 6, pp. 274–304, 1954.
O. V. Å varcman, “A Chevalley theorem for complex crystallographic groups that are generated by mappings in the affine space C^2” (Russian), Uspekhi Mat. Nauk, vol. 34, no.1(205), pp. 249–250, 1979.
S. Tokunaga and M. Yoshida.“Complex crystallographic groups. I.”, J. Math. Soc. Japan, vol. 34, no. 4, pp. 581–593, 1982.
H. Yoshihara, “Galois embedding of algebraic variety and its application to abelian surface”, Rend. Semin. Mat. Univ. Padova, vol. 117, pp. 69–85, 2007.
Most read articles by the same author(s)
- Robert Auffarth, Pseudoinversos de morfismos entre variedades abelianas , CUBO, A Mathematical Journal: In Press
Similar Articles
- Rubén A. Hidalgo, A short note on ð‘€-symmetric hyperelliptic Riemann surfaces * , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Peter Danchev, Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Peter Danchev, Notes on the Isomorphism and Splitting Problems for Commutative Modular Group Algebras , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- Sóstenes Lins, Valdenberg Silva, On Maps with a Single Zigzag , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Victor González Aguilera, On a pencil of ð˜’₃ surfaces , CUBO, A Mathematical Journal: No. 8 (1992): CUBO, Revista de Matemática
- P. Jeyanthi, K. Jeya Daisy, Andrea SemaniÄová-feňovÄíková, \(Z_k\)-magic labeling of path union of graphs , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Wilfrid Hodges, Saharon Shelah, Naturality and definability II , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Rubén A. Hidalgo, A sufficiently complicated noded Schottky group of rank three , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Rubén A. Hidalgo, The structure of extended function groups , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- D. Ebrahimi Bagha, M. Amini, Module amenability for Banach modules , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.