Boundedness and Global Attractivity of Solutions for a System of Nonlinear Integral Equations
-
Bo Zhang
bzhang@uncfsu.edu
Downloads
Abstract
It is well-known that Liapunov‘s direct method has been used very effectively for differential equations. The method has not, however, been used with much success on integral equations until recently. The reason for this lies in the fact that it is very difficult to relate the derivative of a scalar function to the unknown non-differentiable solution of an integral equation. In this paper, we construct a Liapunov functional for a system of nonlinear integral equations. From that Liapunov functional we are able to deduce conditions for boundedness and global attractivity of solutions. As in the case for differential equations, once the Liapunov function is constructed, we can take full advantage of its simplicity in qualitative analysis.
Keywords
Most read articles by the same author(s)
- T. A. Burton, Bo Zhang, Bounded and periodic solutions of integral equations , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Bo Zhang, Periodicity in Dissipative-Repulsive Systems of Functional Differential Equations , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
Similar Articles
- Volodymyr Sushch, Discrete model of Yang-Mills equations in Minkowski space , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
- Vadim N. Biktashev, Envelope equations for modulated non-conservative waves , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Wael Abdelhedi, Minkowski type inequalities for a generalized fractional integral , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Bapurao C. Dhage, John R. Graef, Shyam B. Dhage, Existence, stability and global attractivity results for nonlinear Riemann-Liouville fractional differential equations , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- V. V. Palin, E. V. Radkevich, The Maxwell problem and the Chapman projection , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- George Venkov, Small Data Global Existence and Scattering for the Mass-Critical Nonlinear Schrödinger Equation with Power Convolution in ℳ , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- George A. Anastassiou, Approximation by Shift Invariant Univariate Sublinear-Shilkret Operators , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- C.M. Kirk, A Localized Heat Source Undergoing Periodic Motion: Analysis of Blow-Up and a Numerical Solution , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- David Békollè, Khalil Ezzinbi, Samir Fatajou, Duplex Elvis Houpa Danga, Fritz Mbounja Béssémè, Convolutions in \((\mu,\nu)\)-pseudo-almost periodic and \((\mu,\nu)\)-pseudo-almost automorphic function spaces and applications to solve integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Elke Wolf, Integral composition operators between weighted Bergman spaces and weighted Bloch type spaces , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.