The Fibonacci Zeta-Function is Hypertranscendental
-
J¨orn Steuding
steuding@mathematik.uni-wuerzburg.de
Downloads
Abstract
Applying a theorem of Reich on Dirichlet series satisfying difference-differential equations, we show that the Fibonacci zeta-function satisfies no algebraic differential equation.
Keywords
Similar Articles
- U. Guerrero-Valadez, H. Torres-López, A. G. Zamora, Deformaciones de variedades abelianas con un grupo de automorfismos , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Terje Hill, David A. Robbins, Vector-valued algebras and variants of amenability , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
- Mohammad Farhan, Edy Tri Baskoro, Further results on the metric dimension and spectrum of graphs , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
- Fethi Soltani, Maher Aloui, Hausdorff operators associated with the linear canonical Sturm-Liouville transform , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2008-10-01
How to Cite
[1]
J. Steuding, “The Fibonacci Zeta-Function is Hypertranscendental”, CUBO, vol. 10, no. 3, pp. 133–136, Oct. 2008.
Issue
Section
Articles










