Conjectures in Inverse Boundary Value Problems for Quasilinear Elliptic Equations
-
Ziqi Sun
ziqi.sun@wichita.edu
Downloads
Abstract
Inverse boundary value problems originated in early 80‘s, from the contribution of A.P. Calderon on the inverse conductivity problem [C], in which one attempts to recover the electrical conductivity of a body by means of boundary measurements on the voltage and current. Since then, the area of inverse boundary value problems for linear elliptic equations has undergone a great deal of development [U]. The theoretical growth of this area contributes to many areas of applications ranging from medical imaging to various detection techniques [B-B][Che-Is].
In this paper we discuss several conjectures in the inverse boundary value problems for quasilinear elliptic equations and their recent progress. These problems concern anisotropic quasilinear elliptic equations in connection with nonlinear materials and the nonlinear elasticity system.
Keywords
Similar Articles
- Théodore K. Boni, Diabaté Nabongo, Quenching for discretizations of a nonlocal parabolic problem with Neumann boundary condition , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Nicolas Raymond, Uniform spectral estimates for families of Schrödinger operators with magnetic field of constant intensity and applications , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Aurelian Cernea, On the solution set of a fractional integro-differential inclusion involving Caputo-Katugampola derivative , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- Bashir Ahmad, Amjad F. Albideewi, Sotiris K. Ntouyas, Ahmed Alsaedi, Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Satyam Narayan Srivastava, Smita Pati, John R. Graef, Alexander Domoshnitsky, Seshadev Padhi, Lyapunov-type inequalities for higher-order Caputo fractional differential equations with general two-point boundary conditions , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Rinko Shinzato, Wataru Takahashi, A Strong Convergence Theorem by a New Hybrid Method for an Equilibrium Problem with Nonlinear Mappings in a Hilbert Space , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Binayak Choudhury, Subhajit Kundu, Approximating a solution of an equilibrium problem by Viscosity iteration involving a nonexpansive semigroup , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- Aparajita Dasgupta, M.W. Wong, The semigroup and the inverse of the Laplacian on the Heisenberg group , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Vladik Kreinovich, Engineering design under imprecise probabilities: computational complexity , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Mohsen Razzaghi, Hamid-Reza Marzban, Hybrid Functions in the Calculus of Variations , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.