On the first eigenvalue for linear second order elliptic equations in divergence form
-
Alexander Fabricant
rangelov@math.bas.bg
-
Nikolai Kutev
rangelov@math.bas.bg
-
Tsviatko Rangelov
rangelov@math.bas.bg
Downloads
Abstract
Estimates of the first eigenvalue for linear second-order elliptic equations in divergence form are investigated and some qualitative properties in dependence of the coefficients of the equation are proved. As an application of new formulas for the first eigenvalue, its asymptotic with respect to the large drift is obtained.
Keywords
Similar Articles
- U. Guerrero-Valadez, H. Torres-López, A. G. Zamora, Deformaciones de variedades abelianas con un grupo de automorfismos , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- M. Angélica Astaburuaga, Víctor H. Cortés, Claudio Fernández, Rafael Del Río, Estabilidad espectral y resonancias para perturbaciones de rango finito y singulares , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2007-12-01
How to Cite
[1]
A. Fabricant, N. Kutev, and T. Rangelov, “On the first eigenvalue for linear second order elliptic equations in divergence form”, CUBO, vol. 9, no. 3, pp. 47–64, Dec. 2007.
Issue
Section
Articles











