N-Person Prisoners' Dilemmas
-
Miklos N. Szilagyi
szilagyi@ece.arizona.edu
Downloads
Abstract
This review is an attempt to systematically present the problem of various N-person Prisoners' Dilemma games and some of their possible solutions. Thirteen characteristics of the game are discussed. The role of payoff curves, personalities, and neighborhood is investigated. We report computer simulation experiments based on our new agent-based simulation tool to model social situations for the case of large numbers of not necessarily rational decision-makers. Our model has a number of user-defined parameters such as the size and shape of the simulation environment, the definition of neighborhood, the payoff (reward/penalty) functions, the learning rules, the agents' personalities, and the initial conditlons. We have performed a series of simulation experiments with various combinations of these parameters. lnvestigations of realistic (non-dyadic) situations in which agents have various personalities show interesting new results. For the case of Pavlovian agents the game has two non-trivial but remarkably regular solutions. For a wide range of initial conditions, the number of cooperators oscillates around a relatively small value. When the initial aggregate cooperation probability is above a certain value, the solutions tend to reach well-defined constant values that are dependent on the initial values. For other types of agents the solutions show interesting chaos-like behavior. Examples of non-uniform distributions and mixed personalities are also presented. All solutions strongly depend on the choice of parameter values. The paper provides some insight into the conditions of decentralized cooperation in spatially distributed populations of agents.
Keywords
Most read articles by the same author(s)
- Miklos N. Szilagyi, ð‘-Person Games with Crossing Externalities , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
Similar Articles
- Xavier Antoine, Christophe Besse, Jérémie Szeftel, Towards accurate artificial boundary conditions for nonlinear PDEs through examples , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- C.M. Kirk, A Localized Heat Source Undergoing Periodic Motion: Analysis of Blow-Up and a Numerical Solution , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- László Kapolyi, Network Oligopolies with Multiple Markets , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Jürgen Tolksdorf, Dirac Type Gauge Theories – Motivations and Perspectives , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- M.I. Belishev, Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method) , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Masaru Ikehata, A Remark on the Enclosure Method for a Body with an Unknown Homogeneous Background Conductivity , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Takahiro Sudo, Spectral Rank for ð¶*-Algebras , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Denis L. Blackmore, Yarema A. Prykarpatsky, Anatoliy M. Samoilenko, Anatoliy K. Prykarpatsky, The ergodic measures related with nonautonomous hamiltonian systems and their homology structure. Part 1 , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Xiao-Chuan Cai, Maksymilian Dryja, Marcus Sarkis, A Restricted Additive Schwarz Preconditioner with Harmonic Overlap for Symmetric Positive Definite Linear Systems , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- Giuseppe Gaeta, Further reduction of Poincaré-Dulac normal forms in symmetric systems , CUBO, A Mathematical Journal: Vol. 9 No. 3 (2007): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.