Yamabe Solitons with potential vector field as torse forming
-
Yadab Chandra Mandal
myadab436@gmail.com
-
Shyamal Kumar Hui
skhui@math.buruniv.ac.in
Downloads
DOI:
https://doi.org/10.4067/S0719-06462018000300037Abstract
The Riemannian manifolds whose metric is Yamabe soliton with potential vector field as torse forming admitting Riemannian connection, semisymmetric metric connection and projective semisymmetric connection have been studied. An example is constructed to verify the theorem concerning Riemannian connection.
Keywords
Barbosa, E. and Ribeiro, E., On conformal solutions of the Yamabe flow, Arch. Math., 101(2013), 79-89.
Chen, B. Y.,Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc., 52 (2015), 1535-1547.
Chen, B. Y.,Classification of torqued vector fields and its applications to Ricci solitons, Kragujevac J. of Math., 41(2) (2017), 239-250.
Friedmann, A. and Schouten, J. A., Uber die geometric derhalbsymmetrischen Ubertragung, Math. Zeitschr., 21 (1924), 211-223.
Hamilton, R. S.,The Ricci flow on surfaces, Mathematics and general relativity, Contemp. Math., 71 (1988), 237-262.
Hamilton, R. S.,Lectures on geometric flows, unpublished manuscript, 1989.
Hayden, H. A.,Subspaces of space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.
Hui, S. K. and Chakraborty, D.,Ricci almost solitons on concircular Ricci pseudosymmetric β-Kenmotsu manifolds, Hacettepe J. of Math. and Stat., 47(3) (2018), 579-587.
Hui, S. K. and Mandal, Y. C., Yamabe solitons on Kenmotsu manifolds, Communications inKorean Math. Soc., (2018).
Mandal, Y. C. and Hui, S. K.,On the existence of Yamabe gradient solitons, Int. J. Math.Eng. Manag. Sci., 3(4) (2018), 491-497.
Shaikh, A. A. and Hui, S. K.,On extended generalized φ-recurrent β-Kenmotsu manifolds, Publ. De L‘ Inst. Math., 89(103) (2011), 77-88.
Shaikh, A. A. and Hui, S. K.,On pseudo cyclic Ricci symmetric manifolds admitting semisymmetric metric connection, Scientia series A: Math. Sci., 20 (2010), 73-80.
Yano, K., Concircular geometry I, Concircular transformations, Proc. Imp. Acad. Tokyo, 16(1940), 195-200.
Yano, K., On torse forming direction in a Riemannian space, Proc. Imp. Acad. Tokyo, 20(1944), 340-345.
Yano, K., On semi-symmetric metric connection, Rev. Roum. Math. Pures et Appl.(Bucharest), XV, 9, (1970), 1579-1586.
Yano, K. and Chen, B. Y., On the concurrent vector fields of immersed manifolds, KodaiMath. Sem. Rep., 23 (1971), 343-350.
Zhao, P.,Some properties of projective semisymmetric connections, Int. Math. Forum, 3(7)(2008), 341-347.
Most read articles by the same author(s)
- Shyamal Kumar Hui, On weak concircular symmetries of trans-Sasakian manifolds , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
Similar Articles
- Robert M. Yamaleev, Evolutionary method of construction of solutions of polynomials and related generalized dynamics , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- M.S. Siddesha, C.S. Bagewadi, D. Nirmala, Totally umbilical proper slant submanifolds of para-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Takahiro Sudo, A covering dimension for ð¶*-algebras , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- E. Ballico, Postulation of general unions of lines and +lines in positive characteristic , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- M.I. Belishev, Some remarks on the impedance tomography problem for 3d-manifolds , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- Joss Sánchez P., Characterization of the Banzhaf value using a consistency axiom , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Kazuo Nishimura, John Stachurski, Discrete Time Models in Economic Theory , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Grigori Rozenblum, Nikolay Shirokov, Entire Functions in Weighted ð˜“â‚‚ and Zero Modes of the Pauli Operator with Non-Signdefinite Magnetic Field , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- André Nachbin, Some Mathematical Models for Wave Propagation , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
- Burkhard Lenze, Mathematical Foundations of Neural Network Theory , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
You may also start an advanced similarity search for this article.










