Yamabe Solitons with potential vector field as torse forming
-
Yadab Chandra Mandal
myadab436@gmail.com
-
Shyamal Kumar Hui
skhui@math.buruniv.ac.in
Downloads
DOI:
https://doi.org/10.4067/S0719-06462018000300037Abstract
The Riemannian manifolds whose metric is Yamabe soliton with potential vector field as torse forming admitting Riemannian connection, semisymmetric metric connection and projective semisymmetric connection have been studied. An example is constructed to verify the theorem concerning Riemannian connection.
Keywords
Barbosa, E. and Ribeiro, E., On conformal solutions of the Yamabe flow, Arch. Math., 101(2013), 79-89.
Chen, B. Y.,Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc., 52 (2015), 1535-1547.
Chen, B. Y.,Classification of torqued vector fields and its applications to Ricci solitons, Kragujevac J. of Math., 41(2) (2017), 239-250.
Friedmann, A. and Schouten, J. A., Uber die geometric derhalbsymmetrischen Ubertragung, Math. Zeitschr., 21 (1924), 211-223.
Hamilton, R. S.,The Ricci flow on surfaces, Mathematics and general relativity, Contemp. Math., 71 (1988), 237-262.
Hamilton, R. S.,Lectures on geometric flows, unpublished manuscript, 1989.
Hayden, H. A.,Subspaces of space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.
Hui, S. K. and Chakraborty, D.,Ricci almost solitons on concircular Ricci pseudosymmetric β-Kenmotsu manifolds, Hacettepe J. of Math. and Stat., 47(3) (2018), 579-587.
Hui, S. K. and Mandal, Y. C., Yamabe solitons on Kenmotsu manifolds, Communications inKorean Math. Soc., (2018).
Mandal, Y. C. and Hui, S. K.,On the existence of Yamabe gradient solitons, Int. J. Math.Eng. Manag. Sci., 3(4) (2018), 491-497.
Shaikh, A. A. and Hui, S. K.,On extended generalized φ-recurrent β-Kenmotsu manifolds, Publ. De L‘ Inst. Math., 89(103) (2011), 77-88.
Shaikh, A. A. and Hui, S. K.,On pseudo cyclic Ricci symmetric manifolds admitting semisymmetric metric connection, Scientia series A: Math. Sci., 20 (2010), 73-80.
Yano, K., Concircular geometry I, Concircular transformations, Proc. Imp. Acad. Tokyo, 16(1940), 195-200.
Yano, K., On torse forming direction in a Riemannian space, Proc. Imp. Acad. Tokyo, 20(1944), 340-345.
Yano, K., On semi-symmetric metric connection, Rev. Roum. Math. Pures et Appl.(Bucharest), XV, 9, (1970), 1579-1586.
Yano, K. and Chen, B. Y., On the concurrent vector fields of immersed manifolds, KodaiMath. Sem. Rep., 23 (1971), 343-350.
Zhao, P.,Some properties of projective semisymmetric connections, Int. Math. Forum, 3(7)(2008), 341-347.
Most read articles by the same author(s)
- Shyamal Kumar Hui, On weak concircular symmetries of trans-Sasakian manifolds , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
Similar Articles
- Hendrik Van Maldeghem, Magali Victoor, On Severi varieties as intersections of a minimum number of quadrics , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Spencer Bloch, Helene Esnault, Congruences for the Number of Rational Points, Hodge Type and Motivic Conjectures for Fano Varieties , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Denis L. Blackmore, Yarema A. Prykarpatsky, Anatoliy M. Samoilenko, Anatoliy K. Prykarpatsky, The ergodic measures related with nonautonomous hamiltonian systems and their homology structure. Part 1 , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Joaquim Tavares, On ð™±ð™¼ð™¾áµ Ì› áµ– Singularities of solutions of Complex Vector Fields , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Patrick Eberlein, Left invariant geometry of Lie groups , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- S. Tchuiaga, M. Koivogui, F. Balibuno, V. Mbazumutima, On topological symplectic dynamical systems , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- D.G. Prakasha, H.G. Nagaraja, On quasi-conformally flat and quasi-conformally semisymmetric generalized Sasakian-space-forms , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- N. Seshagiri Rao, K. Kalyani, Kejal Khatri, Contractive mapping theorems in Partially ordered metric spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Jacqueline Rojas, Ramon Mendoza, Eben da Silva, Projective Squares in â„™² and Bott‘s Localization Formula , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Anjali Goswami, Special recurrent transformation in an NPR-Finsler space , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.