Yamabe Solitons with potential vector field as torse forming
-
Yadab Chandra Mandal
myadab436@gmail.com
-
Shyamal Kumar Hui
skhui@math.buruniv.ac.in
Downloads
DOI:
https://doi.org/10.4067/S0719-06462018000300037Abstract
The Riemannian manifolds whose metric is Yamabe soliton with potential vector field as torse forming admitting Riemannian connection, semisymmetric metric connection and projective semisymmetric connection have been studied. An example is constructed to verify the theorem concerning Riemannian connection.
Keywords
Barbosa, E. and Ribeiro, E., On conformal solutions of the Yamabe flow, Arch. Math., 101(2013), 79-89.
Chen, B. Y.,Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc., 52 (2015), 1535-1547.
Chen, B. Y.,Classification of torqued vector fields and its applications to Ricci solitons, Kragujevac J. of Math., 41(2) (2017), 239-250.
Friedmann, A. and Schouten, J. A., Uber die geometric derhalbsymmetrischen Ubertragung, Math. Zeitschr., 21 (1924), 211-223.
Hamilton, R. S.,The Ricci flow on surfaces, Mathematics and general relativity, Contemp. Math., 71 (1988), 237-262.
Hamilton, R. S.,Lectures on geometric flows, unpublished manuscript, 1989.
Hayden, H. A.,Subspaces of space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.
Hui, S. K. and Chakraborty, D.,Ricci almost solitons on concircular Ricci pseudosymmetric β-Kenmotsu manifolds, Hacettepe J. of Math. and Stat., 47(3) (2018), 579-587.
Hui, S. K. and Mandal, Y. C., Yamabe solitons on Kenmotsu manifolds, Communications inKorean Math. Soc., (2018).
Mandal, Y. C. and Hui, S. K.,On the existence of Yamabe gradient solitons, Int. J. Math.Eng. Manag. Sci., 3(4) (2018), 491-497.
Shaikh, A. A. and Hui, S. K.,On extended generalized φ-recurrent β-Kenmotsu manifolds, Publ. De L‘ Inst. Math., 89(103) (2011), 77-88.
Shaikh, A. A. and Hui, S. K.,On pseudo cyclic Ricci symmetric manifolds admitting semisymmetric metric connection, Scientia series A: Math. Sci., 20 (2010), 73-80.
Yano, K., Concircular geometry I, Concircular transformations, Proc. Imp. Acad. Tokyo, 16(1940), 195-200.
Yano, K., On torse forming direction in a Riemannian space, Proc. Imp. Acad. Tokyo, 20(1944), 340-345.
Yano, K., On semi-symmetric metric connection, Rev. Roum. Math. Pures et Appl.(Bucharest), XV, 9, (1970), 1579-1586.
Yano, K. and Chen, B. Y., On the concurrent vector fields of immersed manifolds, KodaiMath. Sem. Rep., 23 (1971), 343-350.
Zhao, P.,Some properties of projective semisymmetric connections, Int. Math. Forum, 3(7)(2008), 341-347.
Most read articles by the same author(s)
- Shyamal Kumar Hui, On weak concircular symmetries of trans-Sasakian manifolds , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
Similar Articles
- M.I. Belishev, A.F. Vakulenko, On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Fortune Massamba, Lightlike geometry of leaves in indefinite Kenmotsu manifolds , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Stephen McDowall, Optical Tomography for Media with Variable Index of Refraction , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Shing So, Recent Developments in Taxicab Geometry , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Brian Weber, Keaton Naff, Canonical metrics and ambiKähler structures on 4-manifolds with \(U(2)\) symmetry , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Zead Mustafa, Hamed Obiedat, A fixed point theorem of Reich in \(G\)-Metric spaces , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- D. G. Prakasha, H. Harish, P. Veeresha, Venkatesha, The Zamkovoy canonical paracontact connection on a para-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Ilker Sahin, Mustafa Telci, A Common Fixed Point Theorem for Pairs of Mappings in Cone Metric Spaces , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Brian Weber, Toric, \(U(2)\), and LeBrun metrics , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Joaquim Tavares, On ð™±ð™¼ð™¾áµ Ì› áµ– Singularities of solutions of Complex Vector Fields , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.