Subclasses of \(\lambda\)-bi-pseudo-starlike functions with respect to symmetric points based on shell-like curves
-
H. Özlem Güney
ozlemg@dicle.edu.tr
-
G. Murugusundaramoorthy
gmsmoorthy@yahoo.com
-
K. Vijaya
kvijaya@vit.ac.in
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000200299Abstract
In this paper we define the subclass \(\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z))\) of the class \(\Sigma\) of bi-univalent functions defined in the unit disk, called \(\lambda\)-bi-pseudo-starlike, with respect to symmetric points, related to shell-like curves connected with Fibonacci numbers. We determine the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\) for functions \(f\in\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z)).\) Further we determine the Fekete-Szegö result for the function class \(\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z))\) and for the special cases \(\alpha=0\), \(\alpha=1\) and \(\tau =-0.618\) we state corollaries improving the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\).
Keywords
K. O. Babalola, “On λ-pseudo-starlike functions”, J. Class. Anal., vol. 3, no. 2, pp. 137–147, 2013.
D. A. Brannan, J. Clunie and W. E. Kirwan, “Coefficient estimates for a class of star-like functions”, Canad. J. Math., vol. 22, no. 3, pp. 476-485, 1970.
D. A. Brannan and T. S. Taha, “On some classes of bi-univalent functions”, Studia Univ. Babes-Bolyai Math., vol. 31, no. 2, pp. 70-77, 1986.
P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, New York, Berlin, Heidelberg and Tokyo: Springer-Verlag, 1983.
S. Joshi, S. Joshi and H. Pawar, “On some subclasses of bi-univalent functions associated with pseudo-starlike function”, J. Egyptian Math. Soc., vol. 24, no. 4, pp. 522-525, 2016.
J. Dziok, R. K. Raina and J. Sokól, “On α−convex functions related to a shell-like curve connected with Fibonacci numbers”, Appl. Math. Comput., vol. 218, no. 3, pp. 996–1002, 2011.
M. Fekete and G. Szegö, “Eine Bemerkung über ungerade Schlichte Funktionen”, J. London Math. Soc., vol. 8, no. 2, pp. 85-89, 1933.
S. S. Miller and P. T. Mocanu Differential Subordinations Theory and Applications, Series of Monographs and Text Books in Pure and Applied Mathematics, vol. 225, New York: Marcel Dekker, 2000.
M. Lewin, “On a coefficient problem for bi-univalent functions”, Proc. Amer. Math. Soc., vol. 18, pp. 63-68, 1967.
Ch. Pommerenke, Univalent Functions, Math. Math, Lehrbucher, Vandenhoeck and Ruprecht, Göttingen, 1975.
R. K. Raina and J. Sokól, “Fekete-Szegö problem for some starlike functions related to shell- like curves”, Math. Slovaca, vol. 66, no. 1, pp. 135-140, 2016.
V. Ravichandran, “Starlike and convex functions with respect to conjugate points”, Acta Math. Acad. Paedagog. Nyházi. (N.S.), vol. 20, no. 1, pp. 31-37, 2004.
K. Sakaguchi, “On a certain univalent mapping”, J. Math. Soc. Japan, vol. 11, no. 1, pp. 72-75, 1959.
J. Sokól, “On starlike functions connected with Fibonacci numbers”, Zeszyty Nauk. Politech. Rzeszowskiej Mat, vol. 23, pp. 111-116, 1999.
H. M. Srivastava, A. K. Mishra and P. Gochhayat, “Certain subclasses of analytic and bi-univalent functions”, Appl. Math. Lett., vol. 23, no. 10, pp. 1188-1192, 2010.
Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, “Coefficient estimates for a certain subclass of analytic and bi-univalent functions”, Appl. Math. Lett., vol. 25, no. 6, pp. 990-994, 2012.
X.-F. Li and A.-P. Wang, “Two new subclasses of bi-univalent functions”, Int. Math. Forum, vol. 7, no. 30, pp. 1495-1504, 2012.
G. Wang, C. Y. Gao and S. M. Yuan, “On certain subclasses of close-to-convex and quasi-convex functions with respect to k−symmetric points”, J. Math. Anal. Appl., vol. 322, no. 1, pp. 97–106, 2006.
P. Zaprawa, “On the Fekete-Szegö problem for classes of bi-univalent functions”, Bull. Belg. Math. Soc. Simon Stevin, vol. 21, no. 1, pp. 169-178, 2014.
Similar Articles
- E. Ballico, Brill-Noether Theories for Rank 1 Sheaves on Mg , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Renukadevi S. Dyavanal, Ashwini M. Hattikal, Madhura M. Mathai, Uniqueness of meromorphic functions sharing a set in annuli , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
- Frank Hansen, Convex Matrix Functions , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Peng Chen, Hui-Sheng Ding, Gaston M. N‘Guérékata, Positive asymptotically almost periodic solutions of an impulsive hematopoiesis model , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
- H. Bueno, Functions of Matrices , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Piotr Mikusi´nski, Generalized functions and convolutions , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Taoufik Chitioui, Khalil Ezzinbi, Amor Rebey, Existence and stability in the α-norm for nonlinear neutral partial differential equations with finite delay , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Fethi Soltani, Reproducing inversion formulas for the Dunkl-Wigner transforms , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- H. M. Srivastava, Fractional calculus and its applications , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- S.S. Dragomir, Refinements of the generalized trapezoid inequality in terms of the cumulative variation and applications , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.