Subclasses of \(\lambda\)-bi-pseudo-starlike functions with respect to symmetric points based on shell-like curves
-
H. Özlem Güney
ozlemg@dicle.edu.tr
-
G. Murugusundaramoorthy
gmsmoorthy@yahoo.com
-
K. Vijaya
kvijaya@vit.ac.in
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000200299Abstract
In this paper we define the subclass \(\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z))\) of the class \(\Sigma\) of bi-univalent functions defined in the unit disk, called \(\lambda\)-bi-pseudo-starlike, with respect to symmetric points, related to shell-like curves connected with Fibonacci numbers. We determine the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\) for functions \(f\in\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z)).\) Further we determine the Fekete-Szegö result for the function class \(\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z))\) and for the special cases \(\alpha=0\), \(\alpha=1\) and \(\tau =-0.618\) we state corollaries improving the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\).
Keywords
K. O. Babalola, “On λ-pseudo-starlike functions”, J. Class. Anal., vol. 3, no. 2, pp. 137–147, 2013.
D. A. Brannan, J. Clunie and W. E. Kirwan, “Coefficient estimates for a class of star-like functions”, Canad. J. Math., vol. 22, no. 3, pp. 476-485, 1970.
D. A. Brannan and T. S. Taha, “On some classes of bi-univalent functions”, Studia Univ. Babes-Bolyai Math., vol. 31, no. 2, pp. 70-77, 1986.
P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, New York, Berlin, Heidelberg and Tokyo: Springer-Verlag, 1983.
S. Joshi, S. Joshi and H. Pawar, “On some subclasses of bi-univalent functions associated with pseudo-starlike function”, J. Egyptian Math. Soc., vol. 24, no. 4, pp. 522-525, 2016.
J. Dziok, R. K. Raina and J. Sokól, “On α−convex functions related to a shell-like curve connected with Fibonacci numbers”, Appl. Math. Comput., vol. 218, no. 3, pp. 996–1002, 2011.
M. Fekete and G. Szegö, “Eine Bemerkung über ungerade Schlichte Funktionen”, J. London Math. Soc., vol. 8, no. 2, pp. 85-89, 1933.
S. S. Miller and P. T. Mocanu Differential Subordinations Theory and Applications, Series of Monographs and Text Books in Pure and Applied Mathematics, vol. 225, New York: Marcel Dekker, 2000.
M. Lewin, “On a coefficient problem for bi-univalent functions”, Proc. Amer. Math. Soc., vol. 18, pp. 63-68, 1967.
Ch. Pommerenke, Univalent Functions, Math. Math, Lehrbucher, Vandenhoeck and Ruprecht, Göttingen, 1975.
R. K. Raina and J. Sokól, “Fekete-Szegö problem for some starlike functions related to shell- like curves”, Math. Slovaca, vol. 66, no. 1, pp. 135-140, 2016.
V. Ravichandran, “Starlike and convex functions with respect to conjugate points”, Acta Math. Acad. Paedagog. Nyházi. (N.S.), vol. 20, no. 1, pp. 31-37, 2004.
K. Sakaguchi, “On a certain univalent mapping”, J. Math. Soc. Japan, vol. 11, no. 1, pp. 72-75, 1959.
J. Sokól, “On starlike functions connected with Fibonacci numbers”, Zeszyty Nauk. Politech. Rzeszowskiej Mat, vol. 23, pp. 111-116, 1999.
H. M. Srivastava, A. K. Mishra and P. Gochhayat, “Certain subclasses of analytic and bi-univalent functions”, Appl. Math. Lett., vol. 23, no. 10, pp. 1188-1192, 2010.
Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, “Coefficient estimates for a certain subclass of analytic and bi-univalent functions”, Appl. Math. Lett., vol. 25, no. 6, pp. 990-994, 2012.
X.-F. Li and A.-P. Wang, “Two new subclasses of bi-univalent functions”, Int. Math. Forum, vol. 7, no. 30, pp. 1495-1504, 2012.
G. Wang, C. Y. Gao and S. M. Yuan, “On certain subclasses of close-to-convex and quasi-convex functions with respect to k−symmetric points”, J. Math. Anal. Appl., vol. 322, no. 1, pp. 97–106, 2006.
P. Zaprawa, “On the Fekete-Szegö problem for classes of bi-univalent functions”, Bull. Belg. Math. Soc. Simon Stevin, vol. 21, no. 1, pp. 169-178, 2014.
Similar Articles
- W. Tutschke, Interactions between partial differential equations and generalized analytic functions , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Moussa Barro, Sado Traoré, Level sets regularization with application to optimization problems , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Edoardo Ballico, Curves in low dimensional projective spaces with the lowest ranks , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- S. S. Dragomir, Several inequalities for an integral transform of positive operators in Hilbert spaces with applications , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Mahdi Zreik, On the approximation of the δ-shell interaction for the 3-D Dirac operator , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Chia-chi Tung, On Semisubmedian Functions and Weak Plurisubharmonicity , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- J¨orn Steuding, The Fibonacci Zeta-Function is Hypertranscendental , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Chao-Ping Chen, Ai-Qi Liu, Feng Qi, Proofs for the Limit of Ratios of Consecutive Terms in Fibonacci Sequence , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Takahiro Sudo, Computing the inverse Laplace transform for rational functions vanishing at infinity , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- Hugo Leiva, Jesús Matute, Nelson Merentes, José Sánchez, On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.