Quasi bi-slant submersions in contact geometry
-
Rajendra Prasad
rp.manpur@rediffmail.com
-
Mehmet Akif Akyol
mehmetakifakyol@bingol.edu.tr
-
Sushil Kumar
sushilmath20@gmail.com
-
Punit Kumar Singh
singhpunit1993@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462022000100001Abstract
The aim of the paper is to introduce the concept of quasi bi-slant submersions from almost contact metric manifolds onto Riemannian manifolds as a generalization of semi-slant and hemi-slant submersions. We mainly focus on quasi bi-slant submersions from cosymplectic manifolds. We give some non-trivial examples and study the geometry of leaves of distributions which are involved in the definition of the submersion. Moreover, we find some conditions for such submersions to be integrable and totally geodesic.
Keywords
M. A. Akyol, “Conformal anti-invariant submersions from cosymplectic manifolds”, Hacet. J. Math. Stat., vol. 46, no. 2, pp. 177–192, 2017.
M. A. Akyol and B. Åžahin, “Conformal slant submersions”, Hacet. J. Math. Stat., vol. 48, no.1, pp. 28–44, 2019.
M. A. Akyol, “Conformal semi-slant submersions”, Int. J. Geom. Methods Mod. Phys., vol. 14, no. 7, 1750114, 25 pages, 2017.
P. Baird and J. C. Wood, Harmonic morphism between Riemannian manifolds, Oxford science publications, Oxford, 2003.
D. E. Blair, Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics. 203, Birkhäuser Boston, Basel, Berlin, 2002.
M. Cengizhan and I. K. Erken, “Anti-invariant Riemannian submersions from cosymplectic manifolds onto Riemannian submersions”, Filomat, vol. 29, no. 7, pp. 1429–1444, 2015.
J.-P. Bourguignon and H. B. Lawson, “Stability and isolation phenomena for Yang-Mills fields”, Comm. Math. Phys., vol. 79, no. 2, pp.189–230, 1981.
J.-P. Bourguignon, “A mathematician‘s visit to Kaluza-Klein theory”, Rend. Sem. Mat. Univ. Politec. Torino, Special Issue, pp. 143–163, 1989.
D. Chinea, “Almost contact metric submersions”, Rend. Circ. Mat. Palermo, vol. 34, no. 1, pp. 89–104, 1985.
M. Falcitelli, A. M. Pastore and S. Ianus, Riemannian submersions and related topics, World Scientific, River Edge, NJ, 2004.
A. Gray, “Pseudo-Riemannian almost product manifolds and submersions”, J. Math. Mech., vol. 16, pp. 715–738, 1967.
Y. Gündüzalp and M. A. Akyol, “Conformal slant submersions from cosymplectic manifolds”, Turkish J. Math., vol. 42, no. 5, pp. 2672–2689, 2018.
S. IanuÅŸ and M. Visinescu, “Kaluza-Klein theory with scalar fields and generalized Hopf manifolds”, Classical Quantum Gravity, vol. 4, no. 5, pp. 1317–1325, 1987.
S. IanuÅŸ, A. M. Ionescu, R. Mocanu and G. E. Vîlcu, “Riemannian submersions from almost contact metric manifolds”, Abh. Math. Semin. Univ. Hambg., vol. 81, no. 1, pp. 101–114, 2011.
S. Kumar, R. Prasad and P. K. Singh, “Conformal semi-slant submersions from Lorentzian para Sasakian manifolds”, Commun. Korean Math. Soc., vol. 34, no. 2, pp. 637–655, 2019.
S. Longwap, F. Massamba and N. E. Homti, “On quasi-hemi-slant Riemannian submersion”, Journal of Advances in Mathematics and Computer Science, vol. 34, no. 1, pp. 1–14, 2019.
B. O‘Neill, “The fundamental equations of a submersion”, Michigan Math. J., vol. 33, no. 13, pp. 459–469, 1966.
K.-S. Park and R. Prasad, “Semi-slant submersions”, Bull. Korean Math. Soc, vol. 50, no. 3, pp. 951–962, 2013.
R. Prasad, S. S. Shukla and S. Kumar, “On quasi-bi-slant submersions”, Mediterr. J. Math., vol. 16, no. 6, paper no. 155, 18 pages, 2019.
R. Prasad, P. K. Singh and S. Kumar, “On quasi-bi-slant submersions from Sasakian manifolds onto Riemannian manifolds”, Afr. Mat., vol. 32, no. 3-4, pp. 403–417, 2020.
B. Åžahin,“Semi-invariant submersions from almost Hermitian manifolds”, Canad.Math.Bull., vol. 56, no. 1, pp. 173–182, 2013.
B. Åžahin, “Slant submersions from almost Hermitian manifolds”, Bull. Math. Soc. Sci. Math. Roumanie, vol. 54 (102), no. 1, pp. 93–105, 2011.
B. Åžahin, “Riemannian submersion from almost Hermitian manifolds”, Taiwanese J. Math., vol. 17, no. 2, pp. 629–659, 2013.
B. Åžahin, Riemannian submersions, Riemannian maps in Hermitian geometry and their applications, Elsevier, Academic Press, London, 2017.
B. Åžahin, “Anti-invariant Riemannian submersions from almost Hermitian manifolds”, Cent. Eur. J. Math., vol. 8, no. 3, pp. 437–447, 2010.
C. Sayar, M. A. Akyol and R. Prasad, “Bi-slant submersions in complex geometry”, Int. J. Geom. Methods Mod. Phys., vol. 17, no. 4, 17 pages, 2020.
C. Sayar, H. M. Ta ̧stan, F. Özdemir and M. M. Tripathi, “Generic submersions from Kaehler manifolds”, Bull. Malays. Math. Sci. Soc., vol. 43, no. 1, pp. 809–831, 2020.
H. M. TaÅŸtan, B. Åžahin and Åž. Yanan, “Hemi-slant submersions”, Mediterr. J. Math., vol 13, no. 4, pp. 2171–2184, 2016.
B. Watson, “Almost Hermitian submersions”, J. Differential Geometry, vol. 11, no. 1, pp. 147–165, 1976.
Similar Articles
- Claus Bauer, A new solution algorithm for skip-free processes to the left , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Jean-François Bony, Vincent Bruneau, Philippe Briet, Georgi Raikov, Resonances and SSF Singularities for Magnetic Schrödinger Operators , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Vladimir V'yugin, Victor Maslov, Algorithmic complexity and statistical mechanics , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- José Adonai P. Seixas, On Bases of Constant Curvature , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- Alessandro Perotti, Regular quaternionic functions and conformal mappings , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Syouji Yano, On the Index of Clifford Algebras of Quadratic Forms , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- Denis L. Blackmore, Yarema A. Prykarpatsky, Anatoliy M. Samoilenko, Anatoliy K. Prykarpatsky, The ergodic measures related with nonautonomous hamiltonian systems and their homology structure. Part 1 , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- P. Brückmann, Tensor Differential Forms and Some Birational Invariants of Projective Manifolds , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- Ana Fuenzalida, Alicia Labra, Cristian Mallol, On Quasi orthogonal Bernstein Jordan algebras , CUBO, A Mathematical Journal: No. 8 (1992): CUBO, Revista de Matemática
- Zhenlai Han, Shurong Sun, Symplectic Geometry Applied to Boundary Problems on Hamiltonian Difference Systems , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.