Quasi bi-slant submersions in contact geometry
-
Rajendra Prasad
rp.manpur@rediffmail.com
-
Mehmet Akif Akyol
mehmetakifakyol@bingol.edu.tr
-
Sushil Kumar
sushilmath20@gmail.com
-
Punit Kumar Singh
singhpunit1993@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462022000100001Abstract
The aim of the paper is to introduce the concept of quasi bi-slant submersions from almost contact metric manifolds onto Riemannian manifolds as a generalization of semi-slant and hemi-slant submersions. We mainly focus on quasi bi-slant submersions from cosymplectic manifolds. We give some non-trivial examples and study the geometry of leaves of distributions which are involved in the definition of the submersion. Moreover, we find some conditions for such submersions to be integrable and totally geodesic.
Keywords
M. A. Akyol, “Conformal anti-invariant submersions from cosymplectic manifolds”, Hacet. J. Math. Stat., vol. 46, no. 2, pp. 177–192, 2017.
M. A. Akyol and B. Åžahin, “Conformal slant submersions”, Hacet. J. Math. Stat., vol. 48, no.1, pp. 28–44, 2019.
M. A. Akyol, “Conformal semi-slant submersions”, Int. J. Geom. Methods Mod. Phys., vol. 14, no. 7, 1750114, 25 pages, 2017.
P. Baird and J. C. Wood, Harmonic morphism between Riemannian manifolds, Oxford science publications, Oxford, 2003.
D. E. Blair, Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics. 203, Birkhäuser Boston, Basel, Berlin, 2002.
M. Cengizhan and I. K. Erken, “Anti-invariant Riemannian submersions from cosymplectic manifolds onto Riemannian submersions”, Filomat, vol. 29, no. 7, pp. 1429–1444, 2015.
J.-P. Bourguignon and H. B. Lawson, “Stability and isolation phenomena for Yang-Mills fields”, Comm. Math. Phys., vol. 79, no. 2, pp.189–230, 1981.
J.-P. Bourguignon, “A mathematician‘s visit to Kaluza-Klein theory”, Rend. Sem. Mat. Univ. Politec. Torino, Special Issue, pp. 143–163, 1989.
D. Chinea, “Almost contact metric submersions”, Rend. Circ. Mat. Palermo, vol. 34, no. 1, pp. 89–104, 1985.
M. Falcitelli, A. M. Pastore and S. Ianus, Riemannian submersions and related topics, World Scientific, River Edge, NJ, 2004.
A. Gray, “Pseudo-Riemannian almost product manifolds and submersions”, J. Math. Mech., vol. 16, pp. 715–738, 1967.
Y. Gündüzalp and M. A. Akyol, “Conformal slant submersions from cosymplectic manifolds”, Turkish J. Math., vol. 42, no. 5, pp. 2672–2689, 2018.
S. IanuÅŸ and M. Visinescu, “Kaluza-Klein theory with scalar fields and generalized Hopf manifolds”, Classical Quantum Gravity, vol. 4, no. 5, pp. 1317–1325, 1987.
S. IanuÅŸ, A. M. Ionescu, R. Mocanu and G. E. Vîlcu, “Riemannian submersions from almost contact metric manifolds”, Abh. Math. Semin. Univ. Hambg., vol. 81, no. 1, pp. 101–114, 2011.
S. Kumar, R. Prasad and P. K. Singh, “Conformal semi-slant submersions from Lorentzian para Sasakian manifolds”, Commun. Korean Math. Soc., vol. 34, no. 2, pp. 637–655, 2019.
S. Longwap, F. Massamba and N. E. Homti, “On quasi-hemi-slant Riemannian submersion”, Journal of Advances in Mathematics and Computer Science, vol. 34, no. 1, pp. 1–14, 2019.
B. O‘Neill, “The fundamental equations of a submersion”, Michigan Math. J., vol. 33, no. 13, pp. 459–469, 1966.
K.-S. Park and R. Prasad, “Semi-slant submersions”, Bull. Korean Math. Soc, vol. 50, no. 3, pp. 951–962, 2013.
R. Prasad, S. S. Shukla and S. Kumar, “On quasi-bi-slant submersions”, Mediterr. J. Math., vol. 16, no. 6, paper no. 155, 18 pages, 2019.
R. Prasad, P. K. Singh and S. Kumar, “On quasi-bi-slant submersions from Sasakian manifolds onto Riemannian manifolds”, Afr. Mat., vol. 32, no. 3-4, pp. 403–417, 2020.
B. Åžahin,“Semi-invariant submersions from almost Hermitian manifolds”, Canad.Math.Bull., vol. 56, no. 1, pp. 173–182, 2013.
B. Åžahin, “Slant submersions from almost Hermitian manifolds”, Bull. Math. Soc. Sci. Math. Roumanie, vol. 54 (102), no. 1, pp. 93–105, 2011.
B. Åžahin, “Riemannian submersion from almost Hermitian manifolds”, Taiwanese J. Math., vol. 17, no. 2, pp. 629–659, 2013.
B. Åžahin, Riemannian submersions, Riemannian maps in Hermitian geometry and their applications, Elsevier, Academic Press, London, 2017.
B. Åžahin, “Anti-invariant Riemannian submersions from almost Hermitian manifolds”, Cent. Eur. J. Math., vol. 8, no. 3, pp. 437–447, 2010.
C. Sayar, M. A. Akyol and R. Prasad, “Bi-slant submersions in complex geometry”, Int. J. Geom. Methods Mod. Phys., vol. 17, no. 4, 17 pages, 2020.
C. Sayar, H. M. Ta ̧stan, F. Özdemir and M. M. Tripathi, “Generic submersions from Kaehler manifolds”, Bull. Malays. Math. Sci. Soc., vol. 43, no. 1, pp. 809–831, 2020.
H. M. TaÅŸtan, B. Åžahin and Åž. Yanan, “Hemi-slant submersions”, Mediterr. J. Math., vol 13, no. 4, pp. 2171–2184, 2016.
B. Watson, “Almost Hermitian submersions”, J. Differential Geometry, vol. 11, no. 1, pp. 147–165, 1976.
Similar Articles
- M.S. Siddesha, C.S. Bagewadi, D. Nirmala, Totally umbilical proper slant submanifolds of para-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Amar Kumar Banerjee, Pratap Kumar Saha, Semi Open sets in bispaces , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- Mohd Danish Siddiqi, Mehmet Akif Akyol, Anti-invariant \({\xi^{\bot}}\)-Riemannian submersions from hyperbolic \(\beta\)-Kenmotsu manifolds , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Fortune Massamba, Lightlike geometry of leaves in indefinite Kenmotsu manifolds , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Patrick Eberlein, Left invariant geometry of Lie groups , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- V. Seenivasan, G. Balasubramanian, G. Thangaraj, Somewhat Fuzzy Semi ð›¼-Irresolute Functions , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- Jan Brandts, Computation of Invariant Subspaces of Large and Sparse Matrices , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Ghislain R. Franssens, On the impossibility of the convolution of distributions , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- William F. Trench, Simplification and Strengthening of Weyl's Definition of Asymptotic Equal Distribution of Two Families of Finite Sets , CUBO, A Mathematical Journal: Vol. 6 No. 3 (2004): CUBO, A Mathematical Journal
- Yadab Chandra Mandal, Shyamal Kumar Hui, Yamabe Solitons with potential vector field as torse forming , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
You may also start an advanced similarity search for this article.