Yamabe Solitons with potential vector field as torse forming
-
Yadab Chandra Mandal
myadab436@gmail.com
-
Shyamal Kumar Hui
skhui@math.buruniv.ac.in
Downloads
DOI:
https://doi.org/10.4067/S0719-06462018000300037Abstract
The Riemannian manifolds whose metric is Yamabe soliton with potential vector field as torse forming admitting Riemannian connection, semisymmetric metric connection and projective semisymmetric connection have been studied. An example is constructed to verify the theorem concerning Riemannian connection.
Keywords
Barbosa, E. and Ribeiro, E., On conformal solutions of the Yamabe flow, Arch. Math., 101(2013), 79-89.
Chen, B. Y.,Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc., 52 (2015), 1535-1547.
Chen, B. Y.,Classification of torqued vector fields and its applications to Ricci solitons, Kragujevac J. of Math., 41(2) (2017), 239-250.
Friedmann, A. and Schouten, J. A., Uber die geometric derhalbsymmetrischen Ubertragung, Math. Zeitschr., 21 (1924), 211-223.
Hamilton, R. S.,The Ricci flow on surfaces, Mathematics and general relativity, Contemp. Math., 71 (1988), 237-262.
Hamilton, R. S.,Lectures on geometric flows, unpublished manuscript, 1989.
Hayden, H. A.,Subspaces of space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.
Hui, S. K. and Chakraborty, D.,Ricci almost solitons on concircular Ricci pseudosymmetric β-Kenmotsu manifolds, Hacettepe J. of Math. and Stat., 47(3) (2018), 579-587.
Hui, S. K. and Mandal, Y. C., Yamabe solitons on Kenmotsu manifolds, Communications inKorean Math. Soc., (2018).
Mandal, Y. C. and Hui, S. K.,On the existence of Yamabe gradient solitons, Int. J. Math.Eng. Manag. Sci., 3(4) (2018), 491-497.
Shaikh, A. A. and Hui, S. K.,On extended generalized φ-recurrent β-Kenmotsu manifolds, Publ. De L‘ Inst. Math., 89(103) (2011), 77-88.
Shaikh, A. A. and Hui, S. K.,On pseudo cyclic Ricci symmetric manifolds admitting semisymmetric metric connection, Scientia series A: Math. Sci., 20 (2010), 73-80.
Yano, K., Concircular geometry I, Concircular transformations, Proc. Imp. Acad. Tokyo, 16(1940), 195-200.
Yano, K., On torse forming direction in a Riemannian space, Proc. Imp. Acad. Tokyo, 20(1944), 340-345.
Yano, K., On semi-symmetric metric connection, Rev. Roum. Math. Pures et Appl.(Bucharest), XV, 9, (1970), 1579-1586.
Yano, K. and Chen, B. Y., On the concurrent vector fields of immersed manifolds, KodaiMath. Sem. Rep., 23 (1971), 343-350.
Zhao, P.,Some properties of projective semisymmetric connections, Int. Math. Forum, 3(7)(2008), 341-347.
Most read articles by the same author(s)
- Shyamal Kumar Hui, On weak concircular symmetries of trans-Sasakian manifolds , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
Similar Articles
- A.A. Shaikh, C.S. Bagewadi, On ð˜•(ð‘˜)-Contact Metric Manifolds , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Pradip Majhi, Debabrata Kar, Beta-almost Ricci solitons on Sasakian 3-manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Vishnuvardhana S.V., Venkatesha, Results on para-Sasakian manifold admitting a quarter symmetric metric connection , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Sunil Kumar Yadav, Abhishek Kushwaha, Dhruwa Narain, Certain results for η-Ricci Solitons and Yamabe Solitons on quasi-Sasakian 3-Manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Bhawana Chaube, S. K. Chanyal, Quarter-symmetric metric connection on a p-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Chandresh Prasad, P. K. Parida, Steffensen-like method in Riemannian manifolds , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- G. Divyashree, Venkatesha, Certain results on the conharmonic curvature tensor of \( (\kappa,\mu) \)-contact metric manifolds , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Wolfgang Rump, The tree of primes in a field , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- A.P. Farajzadeh, A. Amini-Harandi, D. O‘Regan, R.P. Agarwal, Strong vector equilibrium problems in topological vector spaces via KKM maps , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- R. Nithya Raj, R. Sundara Rajan, İsmail Naci Cangül, The metric dimension of cyclic hexagonal chain honeycomb triangular mesh and pencil graphs , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
You may also start an advanced similarity search for this article.