Quarter-symmetric metric connection on a p-Kenmotsu manifold
-
Bhawana Chaube
bhawanachaube18@gmail.com
-
S. K. Chanyal
skchanyal.math@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.153Abstract
In the present paper we study para-Kenmotsu (p-Kenmotsu) manifold equipped with quarter-symmetric metric connection and discuss certain derivation conditions.
Keywords
Mathematics Subject Classification:
S. C. Biswas and U. C. De, “Quarter-symmetric metric connection in an SP-Sasakian manifold,” Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 46, no. 1-2, pp. 49–56, 1997.
A. De, “On Kenmotsu manifold,” Bull. Math. Anal. Appl., vol. 2, no. 3, pp. 1–6, 2010.
U. C. De and G. Pathak, “On 3-dimensional Kenmotsu manifolds,” Indian J. Pure Appl. Math., vol. 35, no. 2, pp. 159–165, 2004.
U. C. De and J. Sengupta, “Quater-symmetric metric connection on a Sasakian manifold,” Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 49, no. 1-2, pp. 7–13, 2000.
U. C. De, D. Mandal, and K. Mandal, “Some characterizations of Kenmotsu manifolds admitting a quarter-symmetric metric connection,” Bull. Transilv. Univ. Braşov Ser. III, vol. 9(58), no. 1, pp. 39–52, 2016.
A. Friedman and J. A. Schouten,“Über die Geometrie der halbsymmetrischen Übertragungen,” Math Z, vol. 21, pp. 211–223, 1924, doi: 10.1007/BF01187468.
S. Gołąb, “On semi-symmetric and quarter-symmetric linear connections,” Tensor (N.S.), vol. 29, no. 3, pp. 249–254, 1975.
A. Haseeb and R. Prasad, “Certain results on Lorentzian para-Kenmotsu manifolds,” Bol. Soc. Parana. Mat. (3), vol. 39, no. 3, pp. 201–220, 2021.
J.-B. Jun, U. C. De, and G. Pathak, “On Kenmotsu manifolds,” J. Korean Math. Soc., vol. 42, no. 3, pp. 435–445, 2005, doi: 10.4134/JKMS.2005.42.3.435.
K. Kenmotsu, “A class of almost contact Riemannian manifolds,” Tohoku Math. J. (2), vol. 24, pp. 93–103, 1972, doi: 10.2748/tmj/1178241594.
M. Kon and K. Yano, Structures on manifolds, ser. Series in Pure Mathematics. Chandrama Prakashan, Allahabad, 1985, vol. 3, doi: 10.1142/0067.
R. S. Mishra, Structures on a differentiable manifold and their applications. Chandrama Prakashan, Allahabad, 1984.
I. Sato, “On a structure similar to the almost contact structure,” Tensor (N.S.), vol. 30, no. 3, pp. 219–224, 1976.
T. Satyanarayana and K. L. S. Prasad, “On a type of para-Kenmotsu manifold,” Pure Mathematical Sciences, vol. 2, no. 4, pp. 165–170, 2013.
R. N. Singh, S. K. Pandey, and G. Pandey, “On a type of Kenmotsu manifold,” Bull. Math. Anal. Appl., vol. 4, no. 1, pp. 117–132, 2012.
B. B. Sinha and K. L. Sai Prasad, “A class of almost para contact metric manifold,” Bull. Calcutta Math. Soc., vol. 87, no. 4, pp. 307–312, 1995.
S. Sular, C. Özgür, and U. C. De, “Quarter-symmetric metric connection in a Kenmotsu manifold,” SUT J. Math., vol. 44, no. 2, pp. 297–306, 2008.
W. Tang, P. Majhi, P. Zhao, and U. C. De, “Legendre curves on 3-dimensional Kenmotsu manifolds admitting semisymmetric metric connection,” Filomat, vol. 32, no. 10, pp. 3651– 3656, 2018, doi: 10.2298/fil1810651t.
M. M. Tripathi, “On a semi symmetric metric connection in a Kenmotsu manifold,” J. Pure Math., vol. 16, pp. 67–71, 1999.
- Department of Science and Technology (IF200486)
Similar Articles
- Vishnuvardhana S.V., Venkatesha, Results on para-Sasakian manifold admitting a quarter symmetric metric connection , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Shyamal Kumar Hui, On weak concircular symmetries of trans-Sasakian manifolds , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- A.A. Shaikh, C.S. Bagewadi, On ð˜•(ð‘˜)-Contact Metric Manifolds , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Dhruwa Narain, Sunil Yadav, On Weak concircular Symmetries of Lorentzian Concircular Structure Manifolds , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Yadab Chandra Mandal, Shyamal Kumar Hui, Yamabe Solitons with potential vector field as torse forming , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- G. Divyashree, Venkatesha, Certain results on the conharmonic curvature tensor of \( (\kappa,\mu) \)-contact metric manifolds , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Mohd Danish Siddiqi, Aliya Naaz Siddiqui, Ali H. Hakami, M. Hasan, Estimation of sharp geometric inequality in \(D_{\alpha}\)-homothetically deformed Kenmotsu manifolds , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Buddhadev Pal, Santosh Kumar, Pankaj Kumar, Einstein warped product spaces on Lie groups , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- D. G. Prakasha, H. Harish, P. Veeresha, Venkatesha, The Zamkovoy canonical paracontact connection on a para-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Vandana, Rajeev Budhiraja, Aliya Naaz Siddiqui Diop, Curvature properties of \(\alpha\)-cosymplectic manifolds with \(\ast\)-\(\eta\)-Ricci-Yamabe solitons , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 B. Chaube et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.