Quarter-symmetric metric connection on a p-Kenmotsu manifold
-
Bhawana Chaube
bhawanachaube18@gmail.com
-
S. K. Chanyal
skchanyal.math@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.153Abstract
In the present paper we study para-Kenmotsu (p-Kenmotsu) manifold equipped with quarter-symmetric metric connection and discuss certain derivation conditions.
Keywords
Mathematics Subject Classification:
S. C. Biswas and U. C. De, “Quarter-symmetric metric connection in an SP-Sasakian manifold,” Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 46, no. 1-2, pp. 49–56, 1997.
A. De, “On Kenmotsu manifold,” Bull. Math. Anal. Appl., vol. 2, no. 3, pp. 1–6, 2010.
U. C. De and G. Pathak, “On 3-dimensional Kenmotsu manifolds,” Indian J. Pure Appl. Math., vol. 35, no. 2, pp. 159–165, 2004.
U. C. De and J. Sengupta, “Quater-symmetric metric connection on a Sasakian manifold,” Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 49, no. 1-2, pp. 7–13, 2000.
U. C. De, D. Mandal, and K. Mandal, “Some characterizations of Kenmotsu manifolds admitting a quarter-symmetric metric connection,” Bull. Transilv. Univ. Braşov Ser. III, vol. 9(58), no. 1, pp. 39–52, 2016.
A. Friedman and J. A. Schouten,“Über die Geometrie der halbsymmetrischen Übertragungen,” Math Z, vol. 21, pp. 211–223, 1924, doi: 10.1007/BF01187468.
S. Gołąb, “On semi-symmetric and quarter-symmetric linear connections,” Tensor (N.S.), vol. 29, no. 3, pp. 249–254, 1975.
A. Haseeb and R. Prasad, “Certain results on Lorentzian para-Kenmotsu manifolds,” Bol. Soc. Parana. Mat. (3), vol. 39, no. 3, pp. 201–220, 2021.
J.-B. Jun, U. C. De, and G. Pathak, “On Kenmotsu manifolds,” J. Korean Math. Soc., vol. 42, no. 3, pp. 435–445, 2005, doi: 10.4134/JKMS.2005.42.3.435.
K. Kenmotsu, “A class of almost contact Riemannian manifolds,” Tohoku Math. J. (2), vol. 24, pp. 93–103, 1972, doi: 10.2748/tmj/1178241594.
M. Kon and K. Yano, Structures on manifolds, ser. Series in Pure Mathematics. Chandrama Prakashan, Allahabad, 1985, vol. 3, doi: 10.1142/0067.
R. S. Mishra, Structures on a differentiable manifold and their applications. Chandrama Prakashan, Allahabad, 1984.
I. Sato, “On a structure similar to the almost contact structure,” Tensor (N.S.), vol. 30, no. 3, pp. 219–224, 1976.
T. Satyanarayana and K. L. S. Prasad, “On a type of para-Kenmotsu manifold,” Pure Mathematical Sciences, vol. 2, no. 4, pp. 165–170, 2013.
R. N. Singh, S. K. Pandey, and G. Pandey, “On a type of Kenmotsu manifold,” Bull. Math. Anal. Appl., vol. 4, no. 1, pp. 117–132, 2012.
B. B. Sinha and K. L. Sai Prasad, “A class of almost para contact metric manifold,” Bull. Calcutta Math. Soc., vol. 87, no. 4, pp. 307–312, 1995.
S. Sular, C. Özgür, and U. C. De, “Quarter-symmetric metric connection in a Kenmotsu manifold,” SUT J. Math., vol. 44, no. 2, pp. 297–306, 2008.
W. Tang, P. Majhi, P. Zhao, and U. C. De, “Legendre curves on 3-dimensional Kenmotsu manifolds admitting semisymmetric metric connection,” Filomat, vol. 32, no. 10, pp. 3651– 3656, 2018, doi: 10.2298/fil1810651t.
M. M. Tripathi, “On a semi symmetric metric connection in a Kenmotsu manifold,” J. Pure Math., vol. 16, pp. 67–71, 1999.
- Department of Science and Technology (IF200486)
Similar Articles
- Yaroslav Kurylev, Matti Lassas, Multidimensional Gel'fand Inverse Boundary Spectral Problem: Uniqueness and Stability , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- Elena Olivos, Omisión de Tipos para Álgebras Parciales , CUBO, A Mathematical Journal: No. 7 (1991): CUBO, Revista de Matemática
- Valeriu Popa, Weakly Picard pairs of multifunctions , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- V. V. Palin, E. V. Radkevich, The Maxwell problem and the Chapman projection , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Anjali Goswami, Special recurrent transformation in an NPR-Finsler space , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Yavar Kian, Local energy decay for the wave equation with a time-periodic non-trapping metric and moving obstacle , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Adrián Esparza-Amador, Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \) , CUBO, A Mathematical Journal: In Press
- Onder Gokmen Yildiz, Soley Ersoy, Melek Masal, A note on inextensible flows of curves on oriented surface , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- Trueman MacHenry, From Fibonacci Numbers to Symmetric Functions , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Pierpaolo Natalini, Paolo Emilio Ricci, Bell Polynomials and some of their Applications , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 B. Chaube et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.