Quarter-symmetric metric connection on a p-Kenmotsu manifold
-
Bhawana Chaube
bhawanachaube18@gmail.com
-
S. K. Chanyal
skchanyal.math@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.153Abstract
In the present paper we study para-Kenmotsu (p-Kenmotsu) manifold equipped with quarter-symmetric metric connection and discuss certain derivation conditions.
Keywords
Mathematics Subject Classification:
S. C. Biswas and U. C. De, “Quarter-symmetric metric connection in an SP-Sasakian manifold,” Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 46, no. 1-2, pp. 49–56, 1997.
A. De, “On Kenmotsu manifold,” Bull. Math. Anal. Appl., vol. 2, no. 3, pp. 1–6, 2010.
U. C. De and G. Pathak, “On 3-dimensional Kenmotsu manifolds,” Indian J. Pure Appl. Math., vol. 35, no. 2, pp. 159–165, 2004.
U. C. De and J. Sengupta, “Quater-symmetric metric connection on a Sasakian manifold,” Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 49, no. 1-2, pp. 7–13, 2000.
U. C. De, D. Mandal, and K. Mandal, “Some characterizations of Kenmotsu manifolds admitting a quarter-symmetric metric connection,” Bull. Transilv. Univ. Braşov Ser. III, vol. 9(58), no. 1, pp. 39–52, 2016.
A. Friedman and J. A. Schouten,“Über die Geometrie der halbsymmetrischen Übertragungen,” Math Z, vol. 21, pp. 211–223, 1924, doi: 10.1007/BF01187468.
S. Gołąb, “On semi-symmetric and quarter-symmetric linear connections,” Tensor (N.S.), vol. 29, no. 3, pp. 249–254, 1975.
A. Haseeb and R. Prasad, “Certain results on Lorentzian para-Kenmotsu manifolds,” Bol. Soc. Parana. Mat. (3), vol. 39, no. 3, pp. 201–220, 2021.
J.-B. Jun, U. C. De, and G. Pathak, “On Kenmotsu manifolds,” J. Korean Math. Soc., vol. 42, no. 3, pp. 435–445, 2005, doi: 10.4134/JKMS.2005.42.3.435.
K. Kenmotsu, “A class of almost contact Riemannian manifolds,” Tohoku Math. J. (2), vol. 24, pp. 93–103, 1972, doi: 10.2748/tmj/1178241594.
M. Kon and K. Yano, Structures on manifolds, ser. Series in Pure Mathematics. Chandrama Prakashan, Allahabad, 1985, vol. 3, doi: 10.1142/0067.
R. S. Mishra, Structures on a differentiable manifold and their applications. Chandrama Prakashan, Allahabad, 1984.
I. Sato, “On a structure similar to the almost contact structure,” Tensor (N.S.), vol. 30, no. 3, pp. 219–224, 1976.
T. Satyanarayana and K. L. S. Prasad, “On a type of para-Kenmotsu manifold,” Pure Mathematical Sciences, vol. 2, no. 4, pp. 165–170, 2013.
R. N. Singh, S. K. Pandey, and G. Pandey, “On a type of Kenmotsu manifold,” Bull. Math. Anal. Appl., vol. 4, no. 1, pp. 117–132, 2012.
B. B. Sinha and K. L. Sai Prasad, “A class of almost para contact metric manifold,” Bull. Calcutta Math. Soc., vol. 87, no. 4, pp. 307–312, 1995.
S. Sular, C. Özgür, and U. C. De, “Quarter-symmetric metric connection in a Kenmotsu manifold,” SUT J. Math., vol. 44, no. 2, pp. 297–306, 2008.
W. Tang, P. Majhi, P. Zhao, and U. C. De, “Legendre curves on 3-dimensional Kenmotsu manifolds admitting semisymmetric metric connection,” Filomat, vol. 32, no. 10, pp. 3651– 3656, 2018, doi: 10.2298/fil1810651t.
M. M. Tripathi, “On a semi symmetric metric connection in a Kenmotsu manifold,” J. Pure Math., vol. 16, pp. 67–71, 1999.
- Department of Science and Technology (IF200486)
Similar Articles
- Venkatesha, Shanmukha B., \(W_2\)-curvature tensor on generalized Sasakian space forms , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Brian Weber, Keaton Naff, Canonical metrics and ambiKähler structures on 4-manifolds with \(U(2)\) symmetry , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- R. Nithya Raj, R. Sundara Rajan, İsmail Naci Cangül, The metric dimension of cyclic hexagonal chain honeycomb triangular mesh and pencil graphs , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Naoyuki Koike, Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Zead Mustafa, Hamed Obiedat, A fixed point theorem of Reich in \(G\)-Metric spaces , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- M.S. Siddesha, C.S. Bagewadi, D. Nirmala, Totally umbilical proper slant submanifolds of para-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Dmitri V. Alekseevsky, Masoud Ganji, Gerd Schmalz, Andrea Spiro, The Levi-Civita connections of Lorentzian manifolds with prescribed optical geometries , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Venkatesha, Divyashree G., Three dimensional f-Kenmotsu manifold satisfying certain curvature conditions , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- Akshay Venkatesh, R.T. Naveen Kumar, On some recurrent properties of three dimensional K-contact manifolds , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- P. Brückmann, Tensor Differential Forms and Some Birational Invariants of Projective Manifolds , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 B. Chaube et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.