Quarter-symmetric metric connection on a p-Kenmotsu manifold
-
Bhawana Chaube
bhawanachaube18@gmail.com
-
S. K. Chanyal
skchanyal.math@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.153Abstract
In the present paper we study para-Kenmotsu (p-Kenmotsu) manifold equipped with quarter-symmetric metric connection and discuss certain derivation conditions.
Keywords
Mathematics Subject Classification:
S. C. Biswas and U. C. De, “Quarter-symmetric metric connection in an SP-Sasakian manifold,” Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 46, no. 1-2, pp. 49–56, 1997.
A. De, “On Kenmotsu manifold,” Bull. Math. Anal. Appl., vol. 2, no. 3, pp. 1–6, 2010.
U. C. De and G. Pathak, “On 3-dimensional Kenmotsu manifolds,” Indian J. Pure Appl. Math., vol. 35, no. 2, pp. 159–165, 2004.
U. C. De and J. Sengupta, “Quater-symmetric metric connection on a Sasakian manifold,” Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 49, no. 1-2, pp. 7–13, 2000.
U. C. De, D. Mandal, and K. Mandal, “Some characterizations of Kenmotsu manifolds admitting a quarter-symmetric metric connection,” Bull. Transilv. Univ. Braşov Ser. III, vol. 9(58), no. 1, pp. 39–52, 2016.
A. Friedman and J. A. Schouten,“Über die Geometrie der halbsymmetrischen Übertragungen,” Math Z, vol. 21, pp. 211–223, 1924, doi: 10.1007/BF01187468.
S. Gołąb, “On semi-symmetric and quarter-symmetric linear connections,” Tensor (N.S.), vol. 29, no. 3, pp. 249–254, 1975.
A. Haseeb and R. Prasad, “Certain results on Lorentzian para-Kenmotsu manifolds,” Bol. Soc. Parana. Mat. (3), vol. 39, no. 3, pp. 201–220, 2021.
J.-B. Jun, U. C. De, and G. Pathak, “On Kenmotsu manifolds,” J. Korean Math. Soc., vol. 42, no. 3, pp. 435–445, 2005, doi: 10.4134/JKMS.2005.42.3.435.
K. Kenmotsu, “A class of almost contact Riemannian manifolds,” Tohoku Math. J. (2), vol. 24, pp. 93–103, 1972, doi: 10.2748/tmj/1178241594.
M. Kon and K. Yano, Structures on manifolds, ser. Series in Pure Mathematics. Chandrama Prakashan, Allahabad, 1985, vol. 3, doi: 10.1142/0067.
R. S. Mishra, Structures on a differentiable manifold and their applications. Chandrama Prakashan, Allahabad, 1984.
I. Sato, “On a structure similar to the almost contact structure,” Tensor (N.S.), vol. 30, no. 3, pp. 219–224, 1976.
T. Satyanarayana and K. L. S. Prasad, “On a type of para-Kenmotsu manifold,” Pure Mathematical Sciences, vol. 2, no. 4, pp. 165–170, 2013.
R. N. Singh, S. K. Pandey, and G. Pandey, “On a type of Kenmotsu manifold,” Bull. Math. Anal. Appl., vol. 4, no. 1, pp. 117–132, 2012.
B. B. Sinha and K. L. Sai Prasad, “A class of almost para contact metric manifold,” Bull. Calcutta Math. Soc., vol. 87, no. 4, pp. 307–312, 1995.
S. Sular, C. Özgür, and U. C. De, “Quarter-symmetric metric connection in a Kenmotsu manifold,” SUT J. Math., vol. 44, no. 2, pp. 297–306, 2008.
W. Tang, P. Majhi, P. Zhao, and U. C. De, “Legendre curves on 3-dimensional Kenmotsu manifolds admitting semisymmetric metric connection,” Filomat, vol. 32, no. 10, pp. 3651– 3656, 2018, doi: 10.2298/fil1810651t.
M. M. Tripathi, “On a semi symmetric metric connection in a Kenmotsu manifold,” J. Pure Math., vol. 16, pp. 67–71, 1999.
- Department of Science and Technology (IF200486)
Similar Articles
- Tomás Caraballo, Peter E. Kloeden, José A. Langa, Atractores globales para sistemas diferenciales no autónomos , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- Gabriel N. Gatica, Algunos Aspectos Básicos del Método de Elementos Finitos , CUBO, A Mathematical Journal: Vol. 1 No. 1 (1999): CUBO, Matemática Educacional
- N. Seshagiri Rao, K. Kalyani, Kejal Khatri, Contractive mapping theorems in Partially ordered metric spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Naoyuki Koike, Examples of a complex hyperpolar action without singular orbit , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- K.P.R. Rao, G.N.V. Kishore, Nguyen Van Luong, A unique common coupled fixed point theorem for four maps under ψ - φ contractive condition in partial metric spaces , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- G. S. Saluja, Convergence theorems for generalized asymptotically quasi-nonexpansive mappings in cone metric spaces , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- Sushanta Kumar Mohanta, Coupled coincidence points for generalized (ψ, ϕ)-pair mappings in ordered cone metric spaces , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- K. Kalyani, N. Seshagiri Rao, Coincidence point results of nonlinear contractive mappings in partially ordered metric spaces , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Shamsur Rahman, Some results on the geometry of warped product CR-submanifolds in quasi-Sasakian manifold , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 B. Chaube et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.