On the conformally \(k\)-th Gauduchon condition and the conformally semi-Kähler condition on almost complex manifolds
- Masaya Kawamura kawamura-m@t.kagawa-nct.ac.jp
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000200333Abstract
We introduce the \(k\)-th Gauduchon condition on almost complex manifolds. We show that if both the conformally \(k\)-th Gauduchon condition and the conformally semi-Kähler condition are satisfied, then it becomes conformally quasi-Kähler.
Keywords
S. Dinew, S. Picard, A. Teleman and A. Verjovsky, Complex non-Kähler geometry, Lecture Notes in Mathematics, C.I.M.E. Foundation Subseries, vol. 2246, Cham, Switzerland: Springer Nature Switzerland AG, 2019.
J. Fu, Z. Wang and D. Wu, “Semilinear equations, the γk function, and generalized Gauduchon metrics”, J. Eur. Math. Soc. (JEMS), vol. 15, no. 2, pp. 659–680, 2013.
P. Gauduchon, “Hermitian connections and Dirac operators”, Boll. Un. Mat. Ital. B (7), vol. 11, no. 2, pp. 257–288, 1997.
A. Gray, “Some examples of almost Hermitian manifolds”, Illinois J. Math., vol. 10, no. 2, pp. 353–366, 1966.
S. Ivanov and G. Papadopoulos, “Vanishing theorems on (l|k)-strong Kähler manifolds with torsion”, Adv. Math., vol. 237, pp. 147–164, 2013.
M. Kawamura, “On Kähler-like and G-Kähler-like almost Hermitian manifolds”, Complex Manifolds, vol. 7, no. 1, pp. 145–161, 2020.
K. Liu and X. Yang, “Ricci curvature on Hermitian manifolds”, Trans. Amer. Math. Soc., vol. 369, no. 7, pp. 5157–5196, 2017.
V. Tosatti, B. Weinkove and S-T. Yau, “Taming symplectic forms and the Calabi-Yau equation”, Proc. Lond. Math. Soc., vol. 97, no. 2, pp. 401–424, 2008.
L. Vezzoni, “On Hermitian curvature flow on almost complex manifolds”, Differential Geom. Appl., vol. 29, no. 5, pp. 709–722, 2011.
B. Yang and F. Zheng, “On curvature tensors of Hermitian manifolds”, Comm. Anal. Geom., vol. 26, no. 5, pp. 1195–1222, 2018.
T. Zheng, “An almost complex Chern-Ricci flow”, J. Geom. Anal., vol. 28, no. 3, pp. 2129– 2165, 2018.
Most read articles by the same author(s)
- Masaya Kawamura, On an \(a\) \(priori\) \(L^\infty\) estimate for a class of Monge-Ampère type equations on compact almost Hermitian manifolds , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
Similar Articles
- A.A. Shaikh, C.S. Bagewadi, On ð˜•(ð‘˜)-Contact Metric Manifolds , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Brian Weber, Toric, \(U(2)\), and LeBrun metrics , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Vishnuvardhana S.V., Venkatesha, Results on para-Sasakian manifold admitting a quarter symmetric metric connection , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Bhawana Chaube, S. K. Chanyal, Quarter-symmetric metric connection on a p-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Shyamal Kumar Hui, On weak concircular symmetries of trans-Sasakian manifolds , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Amar Kumar Banerjee, Pratap Kumar Saha, Semi Open sets in bispaces , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- Vandana, Rajeev Budhiraja, Aliya Naaz Siddiqui Diop, Curvature properties of \(\alpha\)-cosymplectic manifolds with \(\ast\)-\(\eta\)-Ricci-Yamabe solitons , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Buddhadev Pal, Santosh Kumar, Pankaj Kumar, Einstein warped product spaces on Lie groups , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- G. Divyashree, Venkatesha, Certain results on the conharmonic curvature tensor of \( (\kappa,\mu) \)-contact metric manifolds , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Masaya Kawamura, On an \(a\) \(priori\) \(L^\infty\) estimate for a class of Monge-Ampère type equations on compact almost Hermitian manifolds , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
You may also start an advanced similarity search for this article.