On ð˜•(ð‘˜)-Contact Metric Manifolds
- A.A. Shaikh aask2003@yahoo.co.in
- C.S. Bagewadi prof_bagewadi@yahoo.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000100016Abstract
The object of the present paper is to study a type of contact metric manifolds, called ð˜•(ð‘˜)- contact metric manifolds admitting a non-null concircular and torse forming vector field. Among others it is shown that such a manifold is either locally isometric to the Riemannian product En+1(0) × Sn (4) or a Sasakian manifold. Also it is shown that such a contact metric manifold can be expressed as a warped product , where is a 2n-dimensional manifold.
Keywords
Most read articles by the same author(s)
- M.S. Siddesha, C.S. Bagewadi, D. Nirmala, Totally umbilical proper slant submanifolds of para-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
Similar Articles
- Buddhadev Pal, Santosh Kumar, Pankaj Kumar, Einstein warped product spaces on Lie groups , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Yadab Chandra Mandal, Shyamal Kumar Hui, Yamabe Solitons with potential vector field as torse forming , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Pradip Majhi, Debabrata Kar, Beta-almost Ricci solitons on Sasakian 3-manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Shamsur Rahman, Some results on the geometry of warped product CR-submanifolds in quasi-Sasakian manifold , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Shyamal Kumar Hui, On weak concircular symmetries of trans-Sasakian manifolds , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Dhruwa Narain, Sunil Yadav, On Weak concircular Symmetries of Lorentzian Concircular Structure Manifolds , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Fortune Massamba, Lightlike geometry of leaves in indefinite Kenmotsu manifolds , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Bhawana Chaube, S. K. Chanyal, Quarter-symmetric metric connection on a p-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Wolfgang Rump, The tree of primes in a field , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Vishnuvardhana S.V., Venkatesha, Results on para-Sasakian manifold admitting a quarter symmetric metric connection , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.