Existence and controllability of integrodifferential equations with non-instantaneous impulses in Fréchet spaces
- Abdelhamid Bensalem bensalem.abdelhamid@yahoo.com
- Abdelkrim Salim salim.abdelkrim@yahoo.com
- Bashir Ahmad bashirahmad_qau@yahoo.com
- Mouffak Benchohra benchohra@yahoo.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2502.231Abstract
In this paper, we investigate existence of mild solutions to a non-instantaneous integrodifferential equation via resolvent operators in the sense of Grimmer in Fréchet spaces. Utilizing the technique of measures of noncompactness in conjunction with the Darbo's fixed point theorem, we present sufficient criteria ensuring the controllability of the given problem. An illustrative example is also discussed.
Keywords
Mathematics Subject Classification:
S. Abbas and M. Benchohra, Advanced Functional Evolution Equations and Inclusions, Cham, Switzerland: Springer, 2015. doi: 10.1007/978-3-319-17768-7.
S. Abbas, M. Benchohra and G. M. N’Guérékata, “Instantaneous and noninstantaneous impulsive integrodifferential equations in Banach spaces”, Abstr. Appl. Anal., vol. 2020, Art. ID 2690125, 2020. doi: 10.1155/2020/2690125.
B. Ahmad, A. Alsaedi, S. K. Ntouyas and J. Tariboon, Hadamard-type Fractional Differential Equations, Inclusions and Inequalities, Cham, Switzerland: Springer, 2017. doi: 10.1007/978- 3-319-52141-1.
B. Ahmad, J. Henderson, and R. Luca, Boundary Value Problems for Fractional Differential Equations and Systems. NJ, USA: World Scientific, 2021. doi: 10.1142/11942.
A. Baliki and M. Benchohra, “Global existence and stability for neutral functional evolution equations”, Rev. Roumaine Math. Pures Appl., vol. 60, no. 1, pp. 71–82, 2015.
J. Bana`s and K. Goebel, Measure of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Math 60. New York, USA: Marcel Dekker, Inc., 1980.
J. Bana`s, “Measures of noncompactness in the space of continuous tempered functions”, Demonstratio Math., vol. 14, no. 1, pp. 127–133, 1981.
M. Benchohra, F. Bouazzaoui, E. Karapinar and A. Salim, “Controllability of second order functional random differential equations with delay”, Mathematics, vol. 10, no. 7, Art. ID 1120, 2022. doi: 10.3390/math10071120.
N. Benkhettou, K. Aissani, A. Salim, M. Benchohra and C. Tunc, “Controllability of fractional integro-differential equations with infinite delay and non-instantaneous impulses”, Appl. Anal. Optim., vol. 6, no. 1, pp. 79–94, 2022.
A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimension Systems, Vol. II, Systems & Control: Foundations & Applications. Boston, MA, USA: Birkhäuser, Inc., 1993.
P. Chen, Y. Li and X. Zhang, “Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families”, Discrete Contin. Dyn. Syst. Ser. B., vol. 26, no. 3, pp. 1531–1547, 2021. doi: 10.3934/dcdsb.2020171.
R. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory. New-York, USA: Springer-Verlag, 1995. doi: 10.1007/978-1-4612-4224-6.
W. Desch, R. C. Grimmer and W. Schappacher, “Some considerations for linear integrodiffferential equations”, J. Math. Anal. Appl., vol. 104, no. 1, pp. 219–234, 1984. doi: 10.1016/0022- 247X(84)90044-1.
A. Diop, M. A. Diop, O. Diallo and M. B. Traoré, “Local attractivity for integro-differential equations with noncompact semigroups”, Nonauton. Dyn. Syst., vol. 7, no. 1, pp. 102–117, 2020. doi: 10.1515/msds-2020-0113.
M. A. Diop, K. Ezzinbi and M. P. Ly, “Nonlocal problems for integrodifferential equation via resolvent operators and optimal control”, Differ. Incl. Control Optim., vol. 42, no. 1, pp. 5–25, 2022. doi: 10.7151/dmdico.1231.
S. Dudek, “Fixed point theorems in Fréchet algebras and Fréchet spaces and applications to nonlinear integral equations”, Appl. Anal. Disc. Math., vol. 11, no. 2, pp. 340–357, 2017. doi: 10.2298/AADM1702340D.
S. Dudek and L. Olszowy, “Continuous dependence of the solutions of nonlinear integral quadratic Volterra equation on the parameter”, J. Funct. Spaces, Art. ID 471-235, 2015. doi: 10.1155/2015/471235.
R. C. Grimmer, “Resolvent operators for integral equations in a Banach space”, Trans. Amer. Math. Soc., vol. 273, no. 1, pp. 333–349, 1982.
X. Hao and L. Liu, “Mild solution of semilinear impulsive integro-differential evolution equation in Banach spaces”, Math. Methods Appl. Sci., vol. 40, no. 13, pp. 4832–4841, 2017. doi: 10.1002/mma.4350.
A. Heris, A. Salim, M. Benchohra and E. Karapınar, “Fractional partial random differential equations with infinite delay”, Results in Physics, vol. 37, Art. ID 105557, 2022. doi: 10.1016/j.rinp.2022.105557.
E. Hernández and D. O’Regan, “On a new class of abstract impulsive differential equations”, Proc. Amer. Math. Soc., vol. 141, no. 5, pp. 1641–1649, 2013. doi: 10.1090/S0002-9939-2012- 11613-2.
I. Lasiecka and R. Triggiani, “Exact controllability of semilinear abstract systems with application to waves and plates boundary control problems”, Appl. Math. Optim., vol. 23, no. 2, pp. 109–154, 1991. doi: 10.1007/BF01442394.
X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems. Systems & Control: Foundations & Applications. Boston, MA, USA: Birkhäuser Boston, Inc., 1995. doi: 10.1007/978-1-4612-4260-4.
H. Mönch, “Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces”, Nonlinear Anal., vol. 4, no. 5, pp. 985–999, 1980. doi: 10.1016/0362- 546X(80)90010-3.
L. Olszowy and S. Wedrychowicz, “Mild solutions of semilinear evolution equation on an unbounded interval and their applications”, Nonlinear Anal., vol. 72, no. 3-4, pp. 2119–2126, 2010. doi: 10.1016/j.na.2009.10.012.
L. Olszowy, “Fixed point theorems in the Fréchet space C(R+) and functional integral equations on an unbounded interval”, Appl. Math. Comput., vol. 218, no. 18, pp. 9066–9074, 2012. doi: 10.1016/j.amc.2012.03.044.
J. Simon, Banach, Fréchet, Hilbert and Neumann spaces. Mathematics and Statistics Series. Analysis for PDEs set, Vol. 1. Hoboken, NJ, USA: Wiley, 2017.
H. Waheed, A. Zada and J. Xu, “Well-posedness and Hyers-Ulam results for a class of impulsive fractional evolution equations”, Math. Meth. Appl. Sci., vol. 44, no. 1, pp. 749–771, 2021. doi: 10.1002/mma.6784.
J. Xu, B. Pervaiz, A. Zada and S. O. Shah, “Stability analysis of causal integral evolution impulsive systems on time scales”, Acta Math. Sci. Ser. B (Engl. Ed.), vol. 41, no. 3, pp. 781–800, 2021. doi: 10.1007/s10473-021-0310-2.
K. Yosida, Functional Analysis. New York-Berlin, USA-Germany: Springer-Verlag, 1980.
J. Zabczyk, Mathematical Control Theory. Berlin, Germany: Birkhäuser, 1992. doi: 10.1007/978-0-8176-4733-9.
B. Zhu and B. Han, “Approximate controllability for mixed type non-autonomous fractional differential equations”, Qual. Theory Dyn. Syst., vol. 21, no. 4, Art. ID 111, 2022. doi: 10.1007/s12346-022-00641-7.
B. Zhu and B. Han, “Existence and uniqueness of mild solutions for fractional partial integro-differential equations”, Mediterr. J. Math., vol. 17, no. 4, Art. ID 113, 2020. doi: 10.1007/s00009-020-01550-2.
Most read articles by the same author(s)
- Fatima Si bachir, Saïd Abbas, Maamar Benbachir, Mouffak Benchohra, Gaston M. N‘Guérékata, Existence and attractivity results for \(\psi\)-Hilfer hybrid fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Khalida Aissani, Mouffak Benchohra, Nadia Benkhettou, On Fractional Integro-differential Equations with State-Dependent Delay and Non-Instantaneous Impulses , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Bashir Ahmad, Amjad F. Albideewi, Sotiris K. Ntouyas, Ahmed Alsaedi, Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Saïd Abbas, Mouffak Benchohra, Jamal-Eddine Lazreg, Gaston M. N‘Guérékata, Hilfer and Hadamard functional random fractional differential inclusions , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- Nadjet Abada, Mouffak Benchohra, Hadda Hammouche, Existence Results for Semilinear Differential Evolution Equations with Impulses and Delay , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Mouffak Benchohra, Omar Bennihi, Khalil Ezzinbi, Existence Results for Some Neutral Partial Functional Differential Equations of Fractional order with State-Dependent Delay , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- Mouffak Benchohra, Gaston M. N‘Guérékata, Djamila Seba, Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Mouffak Benchohra, Naima Hamidi, Fractional Order Differential Inclusions via the Topological Transversality Method , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Mouffak Benchohra, Fatima-Zohra Mostefai, Weak Solutions of Fractional Order Pettis Integral Inclusions with Multiple Time Delay in Banach Spaces , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
Similar Articles
- Essozimna Kpizim, Bertin Dehigbe, Ramkumar Kasinathan, Ravikumar Kasinathan, Mamadou Abdoul Diop, Approximate controllability of non-instantaneous impulsive stochastic integrodifferential equations driven by Rosenblatt process via resolvent operators , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- N. Seshagiri Rao, K. Kalyani, Fixed point results of \((\phi,\psi)\)-weak contractions in ordered \(b\)-metric spaces , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Ganga Ram Gautam, Sandra Pinelas, Manoj Kumar, Namrata Arya, Jaimala Bishnoi, On the solution of \(\mathcal{T}-\)controllable abstract fractional differential equations with impulsive effects , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Zead Mustafa, Hamed Obiedat, A fixed point theorem of Reich in \(G\)-Metric spaces , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Nadjet Abada, Mouffak Benchohra, Hadda Hammouche, Existence Results for Semilinear Differential Evolution Equations with Impulses and Delay , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Rinko Shinzato, Wataru Takahashi, A Strong Convergence Theorem by a New Hybrid Method for an Equilibrium Problem with Nonlinear Mappings in a Hilbert Space , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Hiroko Manaka, Wataru Takahashi, Weak convergence theorems for maximal monotone operators with nonspreading mappings in a Hilbert space , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Bapurao C. Dhage, Existence and Attractivity Theorems for Nonlinear Hybrid Fractional Integrodifferential Equations with Anticipation and Retardation , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Alka Chadha, Dwijendra N Pandey, Periodic BVP for a class of nonlinear differential equation with a deviated argument and integrable impulses , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 A. Bensalem et al.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.