On generalized Hardy spaces associated with singular partial differential operators
-
Amal Ghandouri
amal.ghandouri@fst.utm.tn
-
Hatem Mejjaoli
mejjaoli.hatem@yahoo.fr
-
Slim Omri
slim.omri@fst.utm.tn
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2502.289Abstract
We define and study the Hardy spaces associated with singular partial differential operators. Also, a characterization by mean of atomic decomposition is investigated.
Keywords
Mathematics Subject Classification:
B. Amri, “The Hardy-Littlewood operator associated with the Riemann-Liouville transform”, Indag. Math. (N.S.), vol. 29, no. 5, pp. 1270–1289, 2018. doi: 10.1016/j.indag.2018.05.007
B. Amri and L. Rachdi, “The Littlewood-Paley g-function associated with the Riemann- Liouville operator”, Ann. Univ. Paedagog. Crac. Stud. Math., vol. 12, pp. 31–58, 2013.
C. Baccar, N. Ben Hamadi, and L. Rachdi, “Best approximation for Weierstrass transform connected with Riemann-Liouville operator”, Commun. Math. Anal., vol. 5, no. 1, pp. 65–83, 2008.
C. Baccar, N. Ben Hamadi and S. Omri, “Fourier multipliers associated with singular partial differential operators”, Oper. Matrices, vol. 11, no. 1, pp. 37–53, 2017. doi: 10.7153/oam-11-03
C. Baccar, N. Ben Hamadi and L. T. Rachdi, “Inversion formulas for Riemann-Liouville transform and its dual associated with singular partial differential operators”, Int. J. Math. Math. Sci., vol. 2006, Art. ID 086238, 2006. doi: 10.1155/IJMMS/2006/86238
C. Baccar and L. T. Rachdi, “Spaces of DLp-type and a convolution product associated with the Riemann-Liouville operators”, Bull. Math. Anal. Appl., vol. 1, no. 3, pp. 16–41, 2009.
N. Ben Hamadi and L. T. Rachdi, “Weyl transforms associated with the Riemann-Liouville operator”. Int. J. Math. Math. Sci., vol. 2006, Art. ID 094768, 2006. doi: 10.1155/IJMMS/2006/94768
R. Coifman and G. Weiss, “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., vol. 83, no. 4, pp. 569–645, 1977. doi: 10.1090/S0002-9904-1977-14325-5
J. A. Fawcett, “Inversion of n-dimensional spherical averages”, SIAM J. Appl. Math., vol. 45, no. 2, pp. 336–341, 1985. doi: 10.1137/0145018
C. Fefferman and E. N. Stein, “Hp spaces of several variables”, Acta Math., vol. 129, no. 3-4, pp. 137–193, 1972. doi: 10.1007/BF02392215
H. Helesten and L. E. Anderson, “An inverse method for the processing of synthetic aper- ture radar data”, Inverse Problems, vol. 3, no. 1, pp. 111–124, 1987. doi: 10.1088/0266- 5611/3/1/013
M. Herberthson, “A numerical implementation of an inverse formula for CARABAS raw Data”. Internal Report D 30430-3.2. National Defense Research Institute, FOA, Box 1165; S-581 11, Sweden, 1986.
K. Hleili, S. Omri and L. T. Rachdi, “Uncertainty principle for the Riemann-Liouville operator”, Cubo, vol. 13, no. 3, pp. 91–115, 2011. doi: 10.4067/s0719-06462011000300006
N. N. Lebedev, Special Functions and Their Applications. New York, USA: Dover Publications, Inc., 1972.
H. Mejjaoli and S. Omri, “Boundedness and compactness of Reimann-Liouville two- wavelet multipliers”, J. Pseudo-Differ. Oper. Appl., vol. 9, no. 2, pp. 189–213, 2018. doi: 10.1007/s11868-018-0235-2
S. Omri and L. T. Rachdi, “An Lp-Lq version of Morgan’s theorem associated with Riemann-Liouville transform”, Int. J. Math. Anal. (Ruse), vol. 1, no. 17-20, pp. 805–824, 2007.
S. Omri and L. T. Rachdi, “Heisenberg-Pauli-Weyl uncertainty principle for the Riemann-Liouville Operator”, JIPAM. J. Inequal. Pure Appl. Math., vol. 9, no. 3, Art. ID 88, 2008.
L. T. Rachdi and A. Rouz, “On the range of the Fourier transform connected with Riemann-Liouville operator”, Ann. Math. Blaise Pascal, vol. 16, no. 2, pp. 355–397, 2009. doi: 10.5802/ambp.272
A. Uchiyama, “A maximal function characterization of Hp on the space of homogeneous type”, Trans. Amer. Math. Soc., vol. 262, no. 2, pp. 579–592, 1980. doi: 10.2307/1999848
A. Uchiyama, Hardy Spaces on the Euclidean Space, Springer Monographs in Mathematics, Tokyo, Japan: Springer-Verlag, 2001. doi: 10.1007/978-4-431-67905-9
G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Li- brary, Cambridge, UK: Cambridge University Press, 1995.
Similar Articles
- Nejc Sirovnik, On certain functional equation in semiprime rings and standard operator algebras , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Rubén A. Hidalgo, A short note on ð‘€-symmetric hyperelliptic Riemann surfaces * , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Marcel Berger, La geometrie de Riemann Aperçu historique et resultats recents , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
- Filippo Cammaroto, Infinitely many solutions for a nonlinear Navier problem involving the \(p\)-biharmonic operator , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Yogesh J. Bagul, Christophe Chesneau, Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Luciano Souza, Wilson Rosa de O. Júnior, Cícero Carlos R. de Brito, Christophe Chesneau, Renan L. Fernandes, Tiago A. E. Ferreira, Tan-G class of trigonometric distributions and its applications , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Alexander Pankov, Discrete almost periodic operators , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Sehie Park, Remarks on KKM Maps and Fixed Point Theorems in Generalized Convex Spaces , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- S.K. Mohanta, Srikanta Mohanta, A common fixed point theorem in G-metric spaces , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- N. Seshagiri Rao, K. Kalyani, Kejal Khatri, Contractive mapping theorems in Partially ordered metric spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
<< < 3 4 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 A. Ghandouri et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











