A simple construction of a fundamental solution for the extended Weinstein equation
-
Sirkka-Liisa Eriksson
sirkka-liisa.eriksson@helsinki.fi
-
Heikki Orelma
Heikki.Orelma@proton.me
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2602.341Abstract
In this article, we study the extended Weinstein equation
\[
Lu=\Delta u+\frac{k}{x_n}\frac{\partial u}{\partial x_n}+\frac{\ell}{x_n^2}u,
\]
where \(u\) is a sufficiently smooth function defined in \(\mathbb{R}^n\) with \(x_n>0\) and \(n\ge 3\). We find a detailed construction for a fundamental solution for the operator \(L\). The fundamental solution is represented by the associated Legendre functions \(Q_\nu^\mu\).
Keywords
Mathematics Subject Classification:
M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, ser. National Bureau of Standards Applied Mathematics Series. U. S. Government Printing Office, Washington, DC, 1964, vol. 55.
Ö. Akın and H. Leutwiler, “On the invariance of the solutions of the Weinstein equation under Möbius transformations,” in Classical and modern potential theory and applications (Chateau de Bonas, 1993), ser. NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. Kluwer Acad. Publ., Dordrecht, 1994, vol. 430, pp. 19–29.
S. Axler, P. Bourdon, and W. Ramey, Harmonic function theory, 2nd ed., ser. Graduate Texts in Mathematics. Springer-Verlag, New York, 2001, vol. 137, doi: 10.1007/978-1-4757-8137-3.
B. Brelot-Collin and M. Brelot, “Représentation intégrale des solutions positives de l’équation Lk(u) = Pn1 ∂2u/∂x21 + k/xn∂u/∂xn = 0 (k constante réelle) dans le demi-espace E(xn > 0), de Rn,” Acad. Roy. Belg. Bull. Cl. Sci. (5), vol. 58, pp. 317–326, 1972.
S. Chaabi, “Analyse complexe et problèmes de Dirichlet dans le plan : équation de Weinstein et autres conductivités non-bornées,” Ph.D. dissertation, Aix-Marseille Université, 2013, Available: https://theses.hal.science/tel-00916049.
T. M. Dunster, “Conical functions with one or both parameters large,” Proc. Roy. Soc. Edin- burgh Sect. A, vol. 119, no. 3-4, pp. 311–327, 1991, doi: 10.1017/S0308210500014864.
J. Elstrodt, F. Grunewald, and J. Mennicke, Groups acting on hyperbolic space, ser. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998, doi: 10.1007/978-3-662-03626-6.
S.-L. Eriksson and H. Orelma, “Fundamental solutions for the Laplace-Beltrami operator defined by the conformal hyperbolic metric and Jacobi polynomials,” Complex Anal. Oper. Theory, vol. 18, no. 1, 2024, Art. ID 10, doi: 10.1007/s11785-023-01459-0.
I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. 1. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964.
I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, A. Jeffrey, Y. V. Geronimus, and M. Y. Tseytlin, Eds. Academic Press [Harcourt Brace Jovanovich, Publish- ers], New York-London-Toronto, 1980.
A. Huber, “Some results on generalized axially symmetric potentials,” in Proceedings of the conference on differential equations (dedicated to A. Weinstein). University of Maryland Book Store, College Park, MD, 1956, pp. 147–155.
H. Leutwiler, “Best constants in the Harnack inequality for the Weinstein equation,” Aequationes Math., vol. 34, no. 2-3, pp. 304–315, 1987, doi: 10.1007/BF01830680.
M. Morimoto, Analytic functionals on the sphere, ser. Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1998, vol. 178, doi: 10.1090/mmono/178.
C. Müller, Spherical harmonics, ser. Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1966, vol. 17.
J. G. Ratcliffe, Foundations of hyperbolic manifolds, 2nd ed., ser. Graduate Texts in Mathematics. Springer, New York, 2006, vol. 149.
L. Schwartz, Théorie des distributions. Tome I, ser. Publications de l’Institut de Mathématiques de l’Université de Strasbourg [Publications of the Mathematical Institute of the University of Strasbourg]. Hermann & Cie, Paris, 1950, vol. 9.
S. Soboleff, “Méthode nouvelle à resoudre le problème de Cauchy pour les équations linéaires hyperboliques normales,” Rec. Math. Moscou, vol. 1, pp. 39–71, 1936.
A. Terras, Harmonic analysis on symmetric spaces and applications. I. Springer-Verlag, New York, 1985, doi: 10.1007/978-1-4612-5128-6.
V. S. Vladimirov and V. V. Zharinov, Uravneniya matematicheskoj fiziki. Moskva: Fiziko-Matematicheskaya Literatura, 2000.
V. Vuojamo and S.-L. Eriksson, “Integral kernels for k-hypermonogenic functions,” Complex Var. Elliptic Equ., vol. 62, no. 9, pp. 1254–1265, 2017, doi: 10.1080/17476933.2016.1250402.
A. Weinstein, “Generalized axially symmetric potential theory,” Bull. Amer. Math. Soc., vol. 59, pp. 20–38, 1953, doi: 10.1090/S0002-9904-1953-09651-3.
Similar Articles
- S. Albeverio, Ya. Belopolskaya, Generalized solutions of the Cauchy problem for the Navier-Stokes system and diffusion processes , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Claus Bauer, A new solution algorithm for skip-free processes to the left , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- George A. Anastassiou, A New Expansion Formula , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Georgi Raikov, Spectral Shift Function for Schr¨odinger Operators in Constant Magnetic Fields , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Kaïs Ammari, Georgi Vodev, Boundary Stabilization of the Transmission Problem for the Bernoulli-Euler Plate Equation , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Xu You, Approximation and inequalities for the factorial function related to the Burnside’s formula , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Juhani Riihentaus, On an inequality related to the radial growth of subharmonic functions , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- A. Rodkina, On Asymptotic Stability of Nonlinear Stochastic Systems with Delay , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi, The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Bashir Ahmad, Amjad F. Albideewi, Sotiris K. Ntouyas, Ahmed Alsaedi, Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
<< < 4 5 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 S.-L. Eriksson et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.