A simple construction of a fundamental solution for the extended Weinstein equation

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2602.341

Abstract

In this article, we study the extended Weinstein equation
\[
Lu=\Delta u+\frac{k}{x_n}\frac{\partial u}{\partial x_n}+\frac{\ell}{x_n^2}u,
\]
where \(u\) is a sufficiently smooth function defined in \(\mathbb{R}^n\) with \(x_n>0\) and \(n\ge 3\). We find a detailed construction for a fundamental solution for the operator \(L\). The fundamental solution is represented by the associated Legendre functions \(Q_\nu^\mu\).

Keywords

Extended Weinstein equation , fundamental solution , associated Legendre function

Mathematics Subject Classification:

22E70 , 35A08
  • Pages: 341–358
  • Date Published: 2024-08-19
  • Vol. 26 No. 2 (2024)

M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, ser. National Bureau of Standards Applied Mathematics Series. U. S. Government Printing Office, Washington, DC, 1964, vol. 55.

Ö. Akın and H. Leutwiler, “On the invariance of the solutions of the Weinstein equation under Möbius transformations,” in Classical and modern potential theory and applications (Chateau de Bonas, 1993), ser. NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. Kluwer Acad. Publ., Dordrecht, 1994, vol. 430, pp. 19–29.

S. Axler, P. Bourdon, and W. Ramey, Harmonic function theory, 2nd ed., ser. Graduate Texts in Mathematics. Springer-Verlag, New York, 2001, vol. 137, doi: 10.1007/978-1-4757-8137-3.

B. Brelot-Collin and M. Brelot, “Représentation intégrale des solutions positives de l’équation Lk(u) = Pn1 ∂2u/∂x21 + k/xn∂u/∂xn = 0 (k constante réelle) dans le demi-espace E(xn > 0), de Rn,” Acad. Roy. Belg. Bull. Cl. Sci. (5), vol. 58, pp. 317–326, 1972.

S. Chaabi, “Analyse complexe et problèmes de Dirichlet dans le plan : équation de Weinstein et autres conductivités non-bornées,” Ph.D. dissertation, Aix-Marseille Université, 2013, Available: https://theses.hal.science/tel-00916049.

T. M. Dunster, “Conical functions with one or both parameters large,” Proc. Roy. Soc. Edin- burgh Sect. A, vol. 119, no. 3-4, pp. 311–327, 1991, doi: 10.1017/S0308210500014864.

J. Elstrodt, F. Grunewald, and J. Mennicke, Groups acting on hyperbolic space, ser. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998, doi: 10.1007/978-3-662-03626-6.

S.-L. Eriksson and H. Orelma, “Fundamental solutions for the Laplace-Beltrami operator defined by the conformal hyperbolic metric and Jacobi polynomials,” Complex Anal. Oper. Theory, vol. 18, no. 1, 2024, Art. ID 10, doi: 10.1007/s11785-023-01459-0.

I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. 1. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964.

I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, A. Jeffrey, Y. V. Geronimus, and M. Y. Tseytlin, Eds. Academic Press [Harcourt Brace Jovanovich, Publish- ers], New York-London-Toronto, 1980.

A. Huber, “Some results on generalized axially symmetric potentials,” in Proceedings of the conference on differential equations (dedicated to A. Weinstein). University of Maryland Book Store, College Park, MD, 1956, pp. 147–155.

H. Leutwiler, “Best constants in the Harnack inequality for the Weinstein equation,” Aequationes Math., vol. 34, no. 2-3, pp. 304–315, 1987, doi: 10.1007/BF01830680.

M. Morimoto, Analytic functionals on the sphere, ser. Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1998, vol. 178, doi: 10.1090/mmono/178.

C. Müller, Spherical harmonics, ser. Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1966, vol. 17.

J. G. Ratcliffe, Foundations of hyperbolic manifolds, 2nd ed., ser. Graduate Texts in Mathematics. Springer, New York, 2006, vol. 149.

L. Schwartz, Théorie des distributions. Tome I, ser. Publications de l’Institut de Mathématiques de l’Université de Strasbourg [Publications of the Mathematical Institute of the University of Strasbourg]. Hermann & Cie, Paris, 1950, vol. 9.

S. Soboleff, “Méthode nouvelle à resoudre le problème de Cauchy pour les équations linéaires hyperboliques normales,” Rec. Math. Moscou, vol. 1, pp. 39–71, 1936.

A. Terras, Harmonic analysis on symmetric spaces and applications. I. Springer-Verlag, New York, 1985, doi: 10.1007/978-1-4612-5128-6.

V. S. Vladimirov and V. V. Zharinov, Uravneniya matematicheskoj fiziki. Moskva: Fiziko-Matematicheskaya Literatura, 2000.

V. Vuojamo and S.-L. Eriksson, “Integral kernels for k-hypermonogenic functions,” Complex Var. Elliptic Equ., vol. 62, no. 9, pp. 1254–1265, 2017, doi: 10.1080/17476933.2016.1250402.

A. Weinstein, “Generalized axially symmetric potential theory,” Bull. Amer. Math. Soc., vol. 59, pp. 20–38, 1953, doi: 10.1090/S0002-9904-1953-09651-3.

Similar Articles

<< < 15 16 17 18 19 20 21 22 23 24 25 26 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2024-08-19

How to Cite

[1]
S.-L. Eriksson and H. Orelma, “A simple construction of a fundamental solution for the extended Weinstein equation”, CUBO, vol. 26, no. 2, pp. 341–358, Aug. 2024.

Issue

Section

Articles

Similar Articles

<< < 15 16 17 18 19 20 21 22 23 24 25 26 > >> 

You may also start an advanced similarity search for this article.