New values of the Julia Robinson number

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2603.387

Abstract

We extend results of Vidaux and Videla concerning the set of Julia Robinson numbers.

Keywords

Decidability , definability , 2-towers , totally real towers , iterates of quadratic polynomials

Mathematics Subject Classification:

03B25 , 11U05 , 11R80
  • Pages: 387–406
  • Date Published: 2024-10-05
  • Vol. 26 No. 3 (2024)

M. Castillo, “On the Julia Robinson number of rings of totally real algebraic integers in some towers of nested square roots,” Ph.D. dissertation, Universidad de Concepción, 2018, Available: http://dmat.cfm.cl/dmat/wp-content/uploads/2018/05/castillomarianela_prog4208.pdf.

P. Gillibert and G. Ranieri, “Julia Robinson numbers,” Int. J. Number Theory, vol. 15, no. 8, pp. 1565–1599, 2019, doi: 10.1142/S1793042119500908.

M. Jarden and C. R. Videla, “Undecidability of families of rings of totally real integers,” Int. J. Number Theory, vol. 4, no. 5, pp. 835–850, 2008, doi: 10.1142/S1793042108001705.

F. Pazuki, N. Technau, and M. Widmer, “Northcott numbers for the house and the Weil height,” Bull. Lond. Math. Soc., vol. 54, no. 5, pp. 1873–1897, 2022, doi: 10.1090/S0002-9939-2015-12592-0.

J. Robinson, “The undecidability of algebraic rings and fields,” Proc. Amer. Math. Soc., vol. 10, pp. 950–957, 1959, doi: 10.1090/S0002-9939-2015-12592-0.

J. Robinson, “On the decision problem for algebraic rings,” in Studies in mathematical analysis and related topics, ser. Stanford Studies in Mathematics and Statistics. Stanford Univ. Press, Stanford, CA, 1962, vol. IV, pp. 297–304.

X. Vidaux and C. R. Videla, “Definability of the natural numbers in totally real towers of nested square roots,” Proc. Amer. Math. Soc., vol. 143, no. 10, pp. 4463–4477, 2015, doi: 10.1090/S0002-9939-2015-12592-0.

Similar Articles

<< < 1 2 3 4 5 6 7 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2024-10-05

How to Cite

[1]
C. Muñoz Sandoval, “New values of the Julia Robinson number”, CUBO, vol. 26, no. 3, pp. 387–406, Oct. 2024.

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 

You may also start an advanced similarity search for this article.