New values of the Julia Robinson number
-
Carlos Muñoz Sandoval
cmunoz2016@udec.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2603.387Abstract
We extend results of Vidaux and Videla concerning the set of Julia Robinson numbers.
Keywords
Mathematics Subject Classification:
M. Castillo, “On the Julia Robinson number of rings of totally real algebraic integers in some towers of nested square roots,” Ph.D. dissertation, Universidad de Concepción, 2018, Available: http://dmat.cfm.cl/dmat/wp-content/uploads/2018/05/castillomarianela_prog4208.pdf.
P. Gillibert and G. Ranieri, “Julia Robinson numbers,” Int. J. Number Theory, vol. 15, no. 8, pp. 1565–1599, 2019, doi: 10.1142/S1793042119500908.
M. Jarden and C. R. Videla, “Undecidability of families of rings of totally real integers,” Int. J. Number Theory, vol. 4, no. 5, pp. 835–850, 2008, doi: 10.1142/S1793042108001705.
F. Pazuki, N. Technau, and M. Widmer, “Northcott numbers for the house and the Weil height,” Bull. Lond. Math. Soc., vol. 54, no. 5, pp. 1873–1897, 2022, doi: 10.1090/S0002-9939-2015-12592-0.
J. Robinson, “The undecidability of algebraic rings and fields,” Proc. Amer. Math. Soc., vol. 10, pp. 950–957, 1959, doi: 10.1090/S0002-9939-2015-12592-0.
J. Robinson, “On the decision problem for algebraic rings,” in Studies in mathematical analysis and related topics, ser. Stanford Studies in Mathematics and Statistics. Stanford Univ. Press, Stanford, CA, 1962, vol. IV, pp. 297–304.
X. Vidaux and C. R. Videla, “Definability of the natural numbers in totally real towers of nested square roots,” Proc. Amer. Math. Soc., vol. 143, no. 10, pp. 4463–4477, 2015, doi: 10.1090/S0002-9939-2015-12592-0.
Similar Articles
- Thomas Blesgen, Two-Phase Structures as Singular Limit of a one-dimensional Discrete Model , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Mohadeseh Rostamani, Shirin Hejazian, Maps preserving Fredholm or semi-Fredholm elements relative to some ideal , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- Théodore K. Boni, Diabaté Nabongo, Quenching for discretizations of a nonlocal parabolic problem with Neumann boundary condition , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Ciprian G. Gal, Sorin G. Gal, On Fokker-Planck and linearized Korteweg-de Vries type equations with complex spatial variables , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- M. E. Luna, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex Numbers and their Elementary Functions , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Jan Andres, Karel Pastor, Pavla Snyrychov´a, Simple Fixed Point Theorems on Linear Continua , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Mouez Dimassi, Maher Zerzeri, Spectral shift function for slowly varying perturbation of periodic Schrödinger operators , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Sébastien Breteaux, Higher order terms for the quantum evolution of a Wick observable within the Hepp method , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- D. Constales, R. De Almeida, R.S. Krausshar, A Generalization of Wiman and Valiron‘s theory to the Clifford analysis setting , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Grigori Rozenblum, Nikolay Shirokov, Entire Functions in Weighted ð˜“â‚‚ and Zero Modes of the Pauli Operator with Non-Signdefinite Magnetic Field , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 C. Muñoz Sandoval

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.