Comparing the real genus and the symmetric crosscap number of a group
-
A. Bacelo
abacelo@ucm.es
-
J. J. Etayo
jetayo@mat.ucm.es
-
E. Martínez
emartinez@mat.uned.es
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2703.659Abstract
Given a finite group \(G\), there exist Klein surfaces, bordered \(X\) and unbordered non-orientable \(S\), such that \(G\) acts as an automorphism group of \(X\) and of \(S\). The minimum algebraic genus \(\rho(G)\) of the surfaces \(X\) is called the real genus of \(G\), and the minimal topological genus \(\tilde{\sigma}(G)\) of the surfaces \(S\) is the symmetric crosscap number of \(G\). In this work we study the relation between the real genus and the symmetric crosscap number of a group \(G\) and how both parameters can be compared. For instance, we see that there exist groups \(G\) such that the difference \(\tilde {\sigma} (G) - \rho (G) = t\) for all even negative numbers \(t\). In order to get it, we correct some inaccuracies in previous works, on these parameters for the groups \(C_m \times D_n\) and \(D_m \times D_n\). On the other hand, for some important families of groups, we prove that \(\tilde {\sigma} (G) = \rho(G) + 1\). We use it to eliminate possible gaps in the symmetric crosscap spectrum, enforcing the conjecture that \(3\) is in fact the unique gap.
Keywords
Mathematics Subject Classification:
A. Bacelo, J. J. Etayo, and E. Martínez, “Filling gaps of the symmetric crosscap spectrum,” Mosc. Math. J., vol. 17, no. 3, pp. 357–369, 2017, doi: 10.17323/1609-4514-2017-17-3-357-369.
A. Bacelo, J. J. Etayo and E. Martínez, “The symmetric crosscap spectrum of Abelian groups,” Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, vol. 112, no. 3, pp. 633–640, 2018, doi: 10.1007/s13398-017-0434-3.
E. Bujalance and E. Martinez, “A remark on NEC groups representing surfaces with boundary,” Bull. London Math. Soc., vol. 21, no. 3, pp. 263–266, 1989.
E.Bujalance, J. J. Etayo, J. M. Gamboa, and G. Gromadzki, Automorphism groups of compact bordered Klein surfaces, ser. Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1990, vol. 1439, doi: 10.1007/BFb0084977.
C. Cano, “Sobre el género real de grupos finitos,” Ph.D. dissertation, Universidad Nacional de Educación a Distancia (UNED), 2011.
J. J. Etayo, E. Martínez, and P. Rodríguez Calderón, “There is no group of real genus 72,” Anales de la Real Academia de Doctores de España, vol. 10, no. 4, pp. 663–680, 2025.
J. J. Etayo Gordejuela and E. Martínez, “The symmetric cross-cap number of the groups Cm ×Dn,” Proc. Roy. Soc. Edinburgh Sect. A, vol. 138, no. 6, pp. 1197–1213, 2008, doi: 10.1017/S0308210507000169.
J. J. Etayo Gordejuela and E. Martínez, “The action of the groups Dm ×Dn on unbordered Klein surfaces,” Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, vol. 105, no. 1, pp. 97–108, 2011, doi: 10.1007/s13398-011-0007-9.
J. J. Etayo Gordejuela and E. Martínez, “The symmetric crosscap number of the families of groups DC3 ×Cn and A4 ×Cn,” Houston J. Math., vol. 38, no. 2, pp. 345–358, 2012.
J. J. Etayo Gordejuela and E. Martínez, “The real genus of cyclic by dihedral and dihedral by dihedral groups,” J. Algebra, vol. 296, no. 1, pp. 145–156, 2006, doi: 10.1016/j.jalgebra.2005.03.038.
G. Gromadzki, “Abelian groups of automorphisms of compact nonorientable Klein surfaces without boundary,” Comment. Math. Prace Mat., vol. 28, no. 2, pp. 197–217, 1989.
C. L. May, “Finite groups acting on bordered surfaces and the real genus of a group,” Rocky Mountain J. Math., vol. 23, no. 2, pp. 707–724, 1993, doi: 10.1216/rmjm/1181072586.
C. L. May, “Finite metacyclic groups acting on bordered surfaces,” Glasgow Math. J., vol. 36, no. 2, pp. 233–240, 1994, doi: 10.1017/S0017089500030779.
C. L. May, “Groups of even real genus,” J. Algebra Appl., vol. 6, no. 6, pp. 973–989, 2007, doi: 10.1142/S0219498807002612.
C. L. May and J. Zimmerman, “The real genus spectrum of abelian groups,” J. Algebra Appl., vol. 18, no. 8, 2019, Art. ID 1950158.
D. McCullough, “Minimal genus of abelian actions on Klein surfaces with boundary,” Math. Z., vol. 205, no. 3, pp. 421–436, 1990, doi: 10.1007/BF02571253.
M. Pires, “Los grupos de género real par,” Anales de la Real Academia de Doctores de España, vol. 9, no. 4, pp. 863–898, 2024.
J. Rodríguez, “Abelian actions on compact nonorientable Riemann surfaces,” Glasg. Math. J., vol. 64, no. 3, pp. 634–648, 2022, doi: 10.1017/S0017089521000410.
Similar Articles
- R. Nithya Raj, R. Sundara Rajan, İsmail Naci Cangül, The metric dimension of cyclic hexagonal chain honeycomb triangular mesh and pencil graphs , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Wael Abdelhedi, Minkowski type inequalities for a generalized fractional integral , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Vito Lampret, Estimating the remainder of an alternating \(p\)-series revisited , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Benjamín Castillo, Algunas extensiones infinitas de \(\mathbb{Q}\) con la propiedad de Bogomolov , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- U. Guerrero-Valadez, H. Torres-López, A. G. Zamora, Deformaciones de variedades abelianas con un grupo de automorfismos , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Sergio Amat, Sonia Busquier, David Levin, Juan C. Trillo, Esquemas de subdivisión no lineales: 25 años de historia a través de 75 contribuciones , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 A. Bacelo et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











