Estimating the remainder of an alternating \(p\)-series revisited
-
Vito Lampret
vito.lampret@guest.arnes.si
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2701.075Abstract
For the \( n \)th remainder \( R_n(p):=
\sum_{k=n+1}^{\infty}(-1)^{k+1}k^{-p} \) of an alternating
\( p \)-series, several asymptotic estimates are presented. For
example, for any integer \( n \ge 3 \), and \( p \in \mathbb{R}^+ \), we have
\[
R_n(p) = \frac{(-1)^n}{2\left(2\left\lfloor \frac{n+1}{2} \right\rfloor\right)^p} -
\frac{p}{4\left(2\left\lfloor \frac{n+1}{2} \right\rfloor\right)^{p+1}}
+ \varepsilon_n^*(p)
\]
and
\[
\left| \varepsilon_n^*(p) \right| < \frac{p(p+1)}{5\,(n-2)^{p+2}},
\]
where \( \lfloor x \rfloor \) denotes the integer part (the floor) of \( x \).
Keywords
Mathematics Subject Classification:
O. Echi, A. Khalfallah, and D. Kroumi, “Estimating the remainder of an alternating series using hypergeometric functions,” J. Math. Inequal., vol. 17, no. 2, pp. 569–580, 2023, doi: https://doi.org/10.7153/jmi-2023-17-36">10.7153/jmi-2023-17-36
V. Lampret, “Efficient estimate of the remainder for the Dirichlet function ( eta(p) ) for ( p in mathbb{R}^+ ),” Miskolc Math. Notes, vol. 21, no. 1, pp. 241–247, 2020, doi: https://doi.org/10.18514/mmn.2020.2877">10.18514/mmn.2020.2877
A. Sîntămărian, “A new proof for estimating the remainder of the alternating harmonic series,” Creat. Math. Inform, vol. 21, no. 2, pp. 221–225, 2012.
A. Sîntămărian, “Sharp estimates regarding the remainder of the alternating harmonic series,” Math. Inequal. Appl., vol. 18, no. 1, pp. 347–352, 2015, doi: https://doi.org/10.7153/mia-18-24">10.7153/mia-18-24
L. Tóth and J. Bukor, “On the alternating series ( 1 - frac{1}{2} + frac{1}{3} - frac{1}{4} + cdots ),” J. Math. Anal. Appl., vol. 282, no. 1, pp. 21–25, 2003, doi: https://doi.org/10.1016/S0022-247X(02)00344-X
S. Wolfram, “Mathematica 7.0,” (2008). Wolfram Research, Inc.
Most read articles by the same author(s)
- Vito Lampret, Double asymptotic inequalities for the generalized Wallis ratio , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Vito Lampret, The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin‘s series , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Vito Lampret, Basic asymptotic estimates for powers of Wallis‘ ratios , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
Similar Articles
- Khristo Boyadzhiev, Dirichlet series and series with Stirling numbers , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Anthony Sofo, Families of skew linear harmonic Euler sums involving some parameters , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- J. Marshall Ash, Uniqueness for higher dimensional trigonometric series , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Xu You, Approximation and inequalities for the factorial function related to the Burnside’s formula , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- S. Haq, K.S. Nisar, A.H. Khan, D.L. Suthar, Certain integral Transforms of the generalized Lommel-Wright function , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- M.I. Belishev, A.F. Vakulenko, On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- George A. Anastassiou, Multiple general sigmoids based Banach space valued neural network multivariate approximation , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- M. Mohammed Abdul Khayyoom, Characterization of Upper Detour Monophonic Domination Number , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Vito Lampret, Double asymptotic inequalities for the generalized Wallis ratio , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Vito Lampret

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.