Estimating the remainder of an alternating \(p\)-series revisited
-
Vito Lampret
vito.lampret@guest.arnes.si
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2701.075Abstract
For the \( n \)th remainder \( R_n(p):=
\sum_{k=n+1}^{\infty}(-1)^{k+1}k^{-p} \) of an alternating
\( p \)-series, several asymptotic estimates are presented. For
example, for any integer \( n \ge 3 \), and \( p \in \mathbb{R}^+ \), we have
\[
R_n(p) = \frac{(-1)^n}{2\left(2\left\lfloor \frac{n+1}{2} \right\rfloor\right)^p} -
\frac{p}{4\left(2\left\lfloor \frac{n+1}{2} \right\rfloor\right)^{p+1}}
+ \varepsilon_n^*(p)
\]
and
\[
\left| \varepsilon_n^*(p) \right| < \frac{p(p+1)}{5\,(n-2)^{p+2}},
\]
where \( \lfloor x \rfloor \) denotes the integer part (the floor) of \( x \).
Keywords
Mathematics Subject Classification:
O. Echi, A. Khalfallah, and D. Kroumi, “Estimating the remainder of an alternating series using hypergeometric functions,” J. Math. Inequal., vol. 17, no. 2, pp. 569–580, 2023, doi: https://doi.org/10.7153/jmi-2023-17-36">10.7153/jmi-2023-17-36
V. Lampret, “Efficient estimate of the remainder for the Dirichlet function ( eta(p) ) for ( p in mathbb{R}^+ ),” Miskolc Math. Notes, vol. 21, no. 1, pp. 241–247, 2020, doi: https://doi.org/10.18514/mmn.2020.2877">10.18514/mmn.2020.2877
A. Sîntămărian, “A new proof for estimating the remainder of the alternating harmonic series,” Creat. Math. Inform, vol. 21, no. 2, pp. 221–225, 2012.
A. Sîntămărian, “Sharp estimates regarding the remainder of the alternating harmonic series,” Math. Inequal. Appl., vol. 18, no. 1, pp. 347–352, 2015, doi: https://doi.org/10.7153/mia-18-24">10.7153/mia-18-24
L. Tóth and J. Bukor, “On the alternating series ( 1 - frac{1}{2} + frac{1}{3} - frac{1}{4} + cdots ),” J. Math. Anal. Appl., vol. 282, no. 1, pp. 21–25, 2003, doi: https://doi.org/10.1016/S0022-247X(02)00344-X
S. Wolfram, “Mathematica 7.0,” (2008). Wolfram Research, Inc.
Most read articles by the same author(s)
- Vito Lampret, Double asymptotic inequalities for the generalized Wallis ratio , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Vito Lampret, The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin‘s series , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Vito Lampret, Basic asymptotic estimates for powers of Wallis‘ ratios , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
Similar Articles
- Rupali Shinde, Christophe Chesneau, Nitin Darkunde, Solutions of two open problems on inequalities involving trigonometric and hyperbolic functions , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Benjamín Castillo, Algunas extensiones infinitas de \(\mathbb{Q}\) con la propiedad de Bogomolov , CUBO, A Mathematical Journal: In Press
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Vito Lampret

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.