Estimating the remainder of an alternating \(p\)-series revisited
-
Vito Lampret
vito.lampret@guest.arnes.si
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2701.075Abstract
For the \( n \)th remainder \( R_n(p):=
\sum_{k=n+1}^{\infty}(-1)^{k+1}k^{-p} \) of an alternating
\( p \)-series, several asymptotic estimates are presented. For
example, for any integer \( n \ge 3 \), and \( p \in \mathbb{R}^+ \), we have
\[
R_n(p) = \frac{(-1)^n}{2\left(2\left\lfloor \frac{n+1}{2} \right\rfloor\right)^p} -
\frac{p}{4\left(2\left\lfloor \frac{n+1}{2} \right\rfloor\right)^{p+1}}
+ \varepsilon_n^*(p)
\]
and
\[
\left| \varepsilon_n^*(p) \right| < \frac{p(p+1)}{5\,(n-2)^{p+2}},
\]
where \( \lfloor x \rfloor \) denotes the integer part (the floor) of \( x \).
Keywords
Mathematics Subject Classification:
O. Echi, A. Khalfallah, and D. Kroumi, “Estimating the remainder of an alternating series using hypergeometric functions,” J. Math. Inequal., vol. 17, no. 2, pp. 569–580, 2023, doi: https://doi.org/10.7153/jmi-2023-17-36">10.7153/jmi-2023-17-36
V. Lampret, “Efficient estimate of the remainder for the Dirichlet function ( eta(p) ) for ( p in mathbb{R}^+ ),” Miskolc Math. Notes, vol. 21, no. 1, pp. 241–247, 2020, doi: https://doi.org/10.18514/mmn.2020.2877">10.18514/mmn.2020.2877
A. Sîntămărian, “A new proof for estimating the remainder of the alternating harmonic series,” Creat. Math. Inform, vol. 21, no. 2, pp. 221–225, 2012.
A. Sîntămărian, “Sharp estimates regarding the remainder of the alternating harmonic series,” Math. Inequal. Appl., vol. 18, no. 1, pp. 347–352, 2015, doi: https://doi.org/10.7153/mia-18-24">10.7153/mia-18-24
L. Tóth and J. Bukor, “On the alternating series ( 1 - frac{1}{2} + frac{1}{3} - frac{1}{4} + cdots ),” J. Math. Anal. Appl., vol. 282, no. 1, pp. 21–25, 2003, doi: https://doi.org/10.1016/S0022-247X(02)00344-X
S. Wolfram, “Mathematica 7.0,” (2008). Wolfram Research, Inc.
Most read articles by the same author(s)
- Vito Lampret, Double asymptotic inequalities for the generalized Wallis ratio , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Vito Lampret, The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin‘s series , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Vito Lampret, Basic asymptotic estimates for powers of Wallis‘ ratios , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
Similar Articles
- S. Richard, R. Tiedra de Aldecoa, Commutator criteria for strong mixing II. More general and simpler , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Takahiro Sudo, The K-theory ranks for crossed products of C*-algebras by the group of integers , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- B. C. Das, Soumen De, B. N. Mandal, Wave propagation through a gap in a thin vertical wall in deep water , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Silvestru Sever Dragomir, Bounds for the generalized \( (\Phi;f) \)-mean difference , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Moussa Barro, Sado Traoré, Level sets regularization with application to optimization problems , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- A. Kamal, T.I. Yassen, D-metric Spaces and Composition Operators Between Hyperbolic Weighted Family of Function Spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- P. Jeyanthi, S. Philo, Odd Harmonious Labeling of Some Classes of Graphs , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Edoardo Ballico, Curves in low dimensional projective spaces with the lowest ranks , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Brian Weber, Toric, \(U(2)\), and LeBrun metrics , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
<< < 16 17 18 19 20 21 22 23 24 25 26 27 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Vito Lampret

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.