Estimating the remainder of an alternating \(p\)-series revisited
-
Vito Lampret
vito.lampret@guest.arnes.si
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2701.075Abstract
For the \( n \)th remainder \( R_n(p):=
\sum_{k=n+1}^{\infty}(-1)^{k+1}k^{-p} \) of an alternating
\( p \)-series, several asymptotic estimates are presented. For
example, for any integer \( n \ge 3 \), and \( p \in \mathbb{R}^+ \), we have
\[
R_n(p) = \frac{(-1)^n}{2\left(2\left\lfloor \frac{n+1}{2} \right\rfloor\right)^p} -
\frac{p}{4\left(2\left\lfloor \frac{n+1}{2} \right\rfloor\right)^{p+1}}
+ \varepsilon_n^*(p)
\]
and
\[
\left| \varepsilon_n^*(p) \right| < \frac{p(p+1)}{5\,(n-2)^{p+2}},
\]
where \( \lfloor x \rfloor \) denotes the integer part (the floor) of \( x \).
Keywords
Mathematics Subject Classification:
O. Echi, A. Khalfallah, and D. Kroumi, “Estimating the remainder of an alternating series using hypergeometric functions,” J. Math. Inequal., vol. 17, no. 2, pp. 569–580, 2023, doi: https://doi.org/10.7153/jmi-2023-17-36">10.7153/jmi-2023-17-36
V. Lampret, “Efficient estimate of the remainder for the Dirichlet function ( eta(p) ) for ( p in mathbb{R}^+ ),” Miskolc Math. Notes, vol. 21, no. 1, pp. 241–247, 2020, doi: https://doi.org/10.18514/mmn.2020.2877">10.18514/mmn.2020.2877
A. Sîntămărian, “A new proof for estimating the remainder of the alternating harmonic series,” Creat. Math. Inform, vol. 21, no. 2, pp. 221–225, 2012.
A. Sîntămărian, “Sharp estimates regarding the remainder of the alternating harmonic series,” Math. Inequal. Appl., vol. 18, no. 1, pp. 347–352, 2015, doi: https://doi.org/10.7153/mia-18-24">10.7153/mia-18-24
L. Tóth and J. Bukor, “On the alternating series ( 1 - frac{1}{2} + frac{1}{3} - frac{1}{4} + cdots ),” J. Math. Anal. Appl., vol. 282, no. 1, pp. 21–25, 2003, doi: https://doi.org/10.1016/S0022-247X(02)00344-X
S. Wolfram, “Mathematica 7.0,” (2008). Wolfram Research, Inc.
Most read articles by the same author(s)
- Vito Lampret, Double asymptotic inequalities for the generalized Wallis ratio , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Vito Lampret, The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin‘s series , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Vito Lampret, Basic asymptotic estimates for powers of Wallis‘ ratios , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
Similar Articles
- Jairo Bochi, Godofredo Iommi, Mario Ponce, Perfect matchings in inhomogeneous random bipartite graphs in random environment , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Hendrik Van Maldeghem, Magali Victoor, On Severi varieties as intersections of a minimum number of quadrics , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- N. Seshagiri Rao, K. Kalyani, Fixed point results of \((\phi,\psi)\)-weak contractions in ordered \(b\)-metric spaces , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Gradimir V. Milovanović, Abdullah Mir, Adil Hussain, Estimates for the polar derivative of a constrained polynomial on a disk , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Mudasir Younis, Nikola Mirkov, Ana Savić, Mirjana Pantović, Stojan Radenović, Some critical remarks on recent results concerning \(\digamma-\)contractions in \(b-\)metric spaces , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Ajay Kumar, Ekta Tamrakar, Inertial algorithm for solving split inclusion problem in Banach spaces , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- A. Zerki, K. Bachouche, K. Ait-Mahiout, Existence of solutions for higher order \(\phi-\)Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- S. S. Dragomir, Several inequalities for an integral transform of positive operators in Hilbert spaces with applications , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Mehdi Dehghanian, Choonkil Park, Yamin Sayyari, Stability of ternary antiderivation in ternary Banach algebras via fixed point theorem , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Edoardo Ballico, Osculating varieties and their joins: \(\mathbb{P}^1\times \mathbb{P}^1\) , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
<< < 19 20 21 22 23 24 25 26 27 28 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Vito Lampret

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.