Perfect matchings in inhomogeneous random bipartite graphs in random environment
-
Jairo Bochi
bochi@psu.edu
-
Godofredo Iommi
giommi@mat.uc.cl
-
Mario Ponce
mponcea@mat.uc.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2402.0263Abstract
In this note we study inhomogeneous random bipartite graphs in random environment. These graphs can be thought of as an extension of the classical ErdÅ‘s-Rényi random bipartite graphs in a random environment. We show that the expected number of perfect matchings obeys a precise asymptotic.
Keywords
M. Abért, P. Csikvári, P. Frenkel and G. Kun, “Matchings in Benjamini-Schramm convergent graph sequences”, Trans. Amer. Math. Soc., vol. 368, no. 6, pp. 4197–4218, 2016.
J. Bochi, G. Iommi and M. Ponce, “The scaling mean and a law of large permanents”, Adv. Math., vol. 292, pp. 374–409, 2016.
L. V. Bogachev, “Random walks in random environments”, in Encyclopedia of Mathematical Physics, vol. 4, pp. 353–371. Elsevier: Oxford, 2006.
B. Bollobás, Random graphs, Cambridge Studies in Advanced Mathematics, vol. 73, Cam- bridge University Press: Cambridge, 2001.
B. Bollobás and B. D. McKay, “The number of matchings in random regular graphs and bipartite graphs”, J. Combin. Theory Ser. B, vol. 41, no. 1, pp. 80–91, 1989.
B. Bollobás, S. Janson and O. Riordan, “The phase transition in inhomogeneous random graphs”, Random Structures Algorithms, vol. 31, no. 1, pp. 3–122, 2007.
P. ErdÅ‘s and A. Rényi, ‘On random graphs. I”, Publ. Math. Debrecen, vol. 6, pp. 290–297, 1959.
P. ErdÅ‘s and A. Rényi, “On random matrices”, Magyar Tud. Akad. Mat. Kutató Int. Közl., vol. 8, pp. 455–461, 1964.
G. Halász and G. J. Székely, “On the elementary symmetric polynomials of independent random variables”, Acta Math. Acad. Sci. Hungar., vol. 28, no. 3–4, pp. 397–400, 1976.
P. Holland, K. Laskey and S. Leinhardt, “Stochastic blockmodels: first steps”, Social Net- works, vol. 5, no. 2, pp. 109–137, 1983.
P. E. O‘Neil, “Asymptotics in random (0, 1)-matrices”, Proc. Amer. Math. Soc., vol. 25, pp. 290–296, 1970.
F. Solomon, “Random walks in a random environment”, Ann. Probability, vol. 3, no. 1, pp. 1–31, 1975.
Most read articles by the same author(s)
- Jairo Bochi, The basic ergodic theorems, yet again , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
Similar Articles
- M. Haviar, S. Kurtulík, A new class of graceful graphs: \(k\)-enriched fan graphs and their characterisations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Reji T., Jinitha Varughese, Ruby R., On graphs that have a unique least common multiple , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Miroslav Haviar, Katarina Kotuľová, Characterizations of kites as graceful graphs , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Saïd Abbas, Mouffak Benchohra, Jamal-Eddine Lazreg, Gaston M. N‘Guérékata, Hilfer and Hadamard functional random fractional differential inclusions , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- P. Jeyanthi, K. Jeya Daisy, Andrea SemaniÄová-feňovÄíková, \(Z_k\)-magic labeling of path union of graphs , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Andrei Gagarin, William Kocay, Daniel Neilson, Embeddings of Small Graphs on the Torus , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- Sahar M. A. Maqbol, R. S. Jain, B. S. Reddy, On stability of nonlocal neutral stochastic integro differential equations with random impulses and Poisson jumps , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Fujisaki Masatoshi, Nonlinear semigroup associated with maximizing operator and large deviation , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- Pedro Ferreira de Lima, Andr´e Toom, Dualities Useful in Bond Percolation , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Vjacheslav A. Yurko, Recovering Higher-order Differential Operators on Star-type Graphs from Spectra , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.