Perfect matchings in inhomogeneous random bipartite graphs in random environment
-
Jairo Bochi
bochi@psu.edu
-
Godofredo Iommi
giommi@mat.uc.cl
-
Mario Ponce
mponcea@mat.uc.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2402.0263Abstract
In this note we study inhomogeneous random bipartite graphs in random environment. These graphs can be thought of as an extension of the classical ErdÅ‘s-Rényi random bipartite graphs in a random environment. We show that the expected number of perfect matchings obeys a precise asymptotic.
Keywords
M. Abért, P. Csikvári, P. Frenkel and G. Kun, “Matchings in Benjamini-Schramm convergent graph sequences”, Trans. Amer. Math. Soc., vol. 368, no. 6, pp. 4197–4218, 2016.
J. Bochi, G. Iommi and M. Ponce, “The scaling mean and a law of large permanents”, Adv. Math., vol. 292, pp. 374–409, 2016.
L. V. Bogachev, “Random walks in random environments”, in Encyclopedia of Mathematical Physics, vol. 4, pp. 353–371. Elsevier: Oxford, 2006.
B. Bollobás, Random graphs, Cambridge Studies in Advanced Mathematics, vol. 73, Cam- bridge University Press: Cambridge, 2001.
B. Bollobás and B. D. McKay, “The number of matchings in random regular graphs and bipartite graphs”, J. Combin. Theory Ser. B, vol. 41, no. 1, pp. 80–91, 1989.
B. Bollobás, S. Janson and O. Riordan, “The phase transition in inhomogeneous random graphs”, Random Structures Algorithms, vol. 31, no. 1, pp. 3–122, 2007.
P. ErdÅ‘s and A. Rényi, ‘On random graphs. I”, Publ. Math. Debrecen, vol. 6, pp. 290–297, 1959.
P. ErdÅ‘s and A. Rényi, “On random matrices”, Magyar Tud. Akad. Mat. Kutató Int. Közl., vol. 8, pp. 455–461, 1964.
G. Halász and G. J. Székely, “On the elementary symmetric polynomials of independent random variables”, Acta Math. Acad. Sci. Hungar., vol. 28, no. 3–4, pp. 397–400, 1976.
P. Holland, K. Laskey and S. Leinhardt, “Stochastic blockmodels: first steps”, Social Net- works, vol. 5, no. 2, pp. 109–137, 1983.
P. E. O‘Neil, “Asymptotics in random (0, 1)-matrices”, Proc. Amer. Math. Soc., vol. 25, pp. 290–296, 1970.
F. Solomon, “Random walks in a random environment”, Ann. Probability, vol. 3, no. 1, pp. 1–31, 1975.
Most read articles by the same author(s)
- Jairo Bochi, The basic ergodic theorems, yet again , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
Similar Articles
- Jan Brandts, Computation of Invariant Subspaces of Large and Sparse Matrices , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- P. Jeyanthi, A. Maheswari, Odd Vertex Equitable Even Labeling of Cycle Related Graphs , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- P. Jeyanthi, S. Philo, Odd Harmonious Labeling of Some Classes of Graphs , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Nakao Hayashi, Pavel l. Naumkin, Existence of asymptotically free solutions for quadratic nonlinear Schrödinger equations in 3d , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- R. Nithya Raj, R. Sundara Rajan, İsmail Naci Cangül, The metric dimension of cyclic hexagonal chain honeycomb triangular mesh and pencil graphs , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Elena I. Kaikina, Leonardo Guardado-Zavala, Hector F. Ruiz-Paredes, S. Juarez Zirate, Korteweg-de Vries-Burgers equation on a segment , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Fernando Levstein, Carolina Maldonado, Generalized quadrangles and subconstituent algebra , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Adara M. Blaga, Manoj Ray Bakshi, Kanak Kanti Baishya, Hyper generalized pseudo \(Q\)-symmetric semi-Riemannian manifolds , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Martin Moskowitz, Symmetric Spaces of Noncompact type , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Wael Abdelhedi, Minkowski type inequalities for a generalized fractional integral , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
You may also start an advanced similarity search for this article.