Continuity via ΛsI-open sets
-
José Sanabria
jesanabri@gmail.com
-
Edumer Acosta
edumeracostab@gmail.com
-
Carlos Carpintero
carpintero.carlos@gmail.com
-
Ennis Rosas
ennisrafael@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462015000100006Abstract
Sanabria, Rosas and Carpintero [7] introduced the notions of ΛsI-sets and ΛsI-closed sets using ideals on topological spaces. Given an ideal I on a topological space (X, τ), a subset A ⊂ X is said to be ΛsI-closed if A = U∩F where U is a ΛsI-set and F is a τ*-closed set. In this work we use sets that are complements of ΛsI-closed sets, which are called ΛsI-open, to characterize new variants of continuity namely ΛsI-continuous, quasi- ΛsI-continuous y ΛsI-irresolute functions.
Keywords
Most read articles by the same author(s)
- Ennis Rosas, Carlos Carpintero, Sabir Hussain, (i, j)-ω-semiopen sets and (i, j)-ω-semicontinuity in bitopological spaces , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
- José Sanabria, Ennis Rosas, Neelamegarajan Rajesh, Carlos Carpintero, Amalia Gómez, S-paracompactness modulo an ideal , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
Similar Articles
- Ghislain R. Franssens, On the impossibility of the convolution of distributions , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Alexander A. Kovalevsky, Francesco Nicolosi, On a condition for the nonexistence of \(W\)-solutions of nonlinear high-order equations with L\(^1\) -data , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- T. A. Burton, Bo Zhang, Bounded and periodic solutions of integral equations , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Terje Hill, David A. Robbins, Vector-valued algebras and variants of amenability , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
- A. Kamal, T.I. Yassen, D-metric Spaces and Composition Operators Between Hyperbolic Weighted Family of Function Spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Jyotirmoy Mouley, M. M. Panja, B. N. Mandal, Approximate solution of Abel integral equation in Daubechies wavelet basis , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Roberto Dieci, Gian-Italo Bishi, Laura Gardini, Routes to Complexity in a Macroeconomic Model Described by a Noninvertible Triangular Map , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- William Greenberg, Michael Williams, Global Solutions of the Enskog Lattice Equation with Square Well Potential , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- M.I. Belishev, Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method) , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Carl Chiarella, Ferenc Szidarovszky, A Multiobjective Model of Oligopolies under Uncertainty , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
<< < 4 5 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.










