Solow models on time scales
-
Martin Bohner
bohner@mst.edu
-
Julius Heim
julius.heim@mst.edu
-
Ailian Liu
ailianliu2002@163.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462013000100002Abstract
We introduce a general Solow model on time scales and derive a nonlinear first-order dynamic equation that describes such a model. We first assume that there is neither technological development nor a change in the population. We present the Cobb– Douglas production function on time scales and use it to give the solution for the equation that describes the model. Next, we provide several applications of the generalized Solow model. Finally, we generalize our work by allowing technological development and population growth. The presented results not only unify the continuous and the discrete Solow models but also extend them to other cases “in between”, e.g., a quantum calculus version of the Solow model. Finally it is also noted that our results even generalize the classical continuous and discrete Solow models since we allow the savings rate, the depreciation factor of goods, the growth rate of the population, and the technological growth rates to be functions of time rather than taking constant values as in the classical Solow models.
Keywords
Similar Articles
- Yogesh J. Bagul, Christophe Chesneau, Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Gen-Qiang Wang, Sui Sun Cheng, Oscillation of second order differential equation with piecewise constant argument , CUBO, A Mathematical Journal: Vol. 6 No. 3 (2004): CUBO, A Mathematical Journal
- Mihai Prunescu, Concrete algebraic cohomology for the group (â„, +) or how to solve the functional equation ð‘“(ð‘¥+ð‘¦) - ð‘“(ð‘¥) - ð‘“(ð‘¦) = ð‘”(ð‘¥, ð‘¦) , CUBO, A Mathematical Journal: Vol. 9 No. 3 (2007): CUBO, A Mathematical Journal
- Thomas Blesgen, Two-Phase Structures as Singular Limit of a one-dimensional Discrete Model , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Peter D. Hislop, Fundamentals of scattering theory and resonances in quantum mechanics , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Vladimir V'yugin, Victor Maslov, Algorithmic complexity and statistical mechanics , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- U. Traoré, Entropy solution for a nonlinear parabolic problem with homogeneous Neumann boundary condition involving variable exponents , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- René Erlín Castillo, Babar Sultan, A derivative-type operator and its application to the solvability of a nonlinear three point boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Wolfgang Spr¨ossig, Quaternionic analysis and Maxwell‘s equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Aníbal Coronel, Fernando Huancas, Esperanza Lozada, Jorge Torres, Análisis matemático de un problema inverso para un sistema de reacción-difusión originado en epidemiología , CUBO, A Mathematical Journal: In Press
<< < 4 5 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.











