Normalized solutions for coupled Kirchhoff equations with critical and subcritical nonlinearities
-
Qilin Xie
xieql@gdut.edu.cn
-
Lin Xu
327570172@qq.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2801.053Abstract
In this paper, we study Kirchhoff equations with constraint conditions
\begin{equation}\tag{P}\label{00001}
\left\{
\begin{aligned}
-\bigg(&a+b \int_{\mathbb{R}^{3}}|\nabla u_{1}|^{2} \, d x\bigg)\,\Delta u_{1}
= \lambda_{1} u_{1}\\
&+\mu_{1}|u_{1}|^{p_{1}-2} u_{1}
+\beta r_{1}|u_{1}|^{r_{1}-2} u_{1}|u_{2}|^{r_{2}}
\quad \text{in } \mathbb{R}^{3}, \\
-\bigg(&a+b \int_{\mathbb{R}^{3}}|\nabla u_{2}|^{2} \, d x\bigg)\, \Delta u_{2}
= \lambda_{2} u_{2}\\
&+\mu_{2}|u_{2}|^{p_{2}-2} u_{2} +\beta r_{2}|u_{1}|^{r_{1}}|u_{2}|^{r_{2}-2} u_{2}
\quad \text{in } \mathbb{R}^{3}, \\
\int_{\mathbb{R}^{3}} &|u_{1}|^{2}\,dx=c_{1},\quad
\int_{\mathbb{R}^{3}} |u_{2}|^{2}\,dx=c_{2}, \\
u&_{1} \in H^{1}\left(\mathbb{R}^{3}\right),\quad
u_{2} \in H^{1}\left(\mathbb{R}^{3}\right).
\end{aligned}
\right.
\end{equation}
where \(a\), \(b\), \(\beta\), \(\mu_{i}\), \(c_{i}>0\), \(r_{i}>1\), \(2<p_{i}<\frac{14}{3}<r:=r_{1}+r_{2}\leq2^{*}\) for \(i=1\), \(2\), and \(\lambda_{1}\), \(\lambda_{2}\in \mathbb{R}\) appear as Lagrange multipliers. The existence of normalized solutions for \(p_1\) and \( p_2\) within a specific range of \((2, \frac{14}{3})\) has been considered both the Sobolev subcritical case (\(r < 2^{*}\)) and the critical case (\(r = 2^{*}\)) by the Minimax principle and variational methods. This paper provides a refinement and extension of the results for the normalized solutions to Kirchhoff equations.
Keywords
Mathematics Subject Classification:
C. O. Alves, F. J. S. A. Corrêa, and T. F. Ma, “Positive solutions for a quasilinear elliptic equation of Kirchhoff type,” Comput. Math. Appl., vol. 49, no. 1, pp. 85–93, 2005, doi: 10.1016/j.camwa.2005.01.008.
T. Bartsch and L. Jeanjean, “Normalized solutions for nonlinear Schrödinger systems,” Proc. Roy. Soc. Edinburgh Sect. A, vol. 148, no. 2, pp. 225–242, 2018, doi: 10.1017/S0308210517000087.
T. Bartsch, L. Jeanjean, and N. Soave, “Normalized solutions for a system of coupled cubic Schrödinger equations on R3,” J. Math. Pures Appl. (9), vol. 106, no. 4, pp. 583–614, 2016, doi: 10.1016/j.matpur.2016.03.004.
T. Bartsch, H. Li, and W. Zou, “Existence and asymptotic behavior of normalized ground states for Sobolev critical Schrödinger systems,” Calc. Var. Partial Differential Equations, vol. 62, no. 1, 2023, Art. ID 9, doi: 10.1007/s00526-022-02355-9.
X. Cao, J. Xu, and J. Wang, “The existence of solutions with prescribed L2-norm for Kirchhoff type system,” J. Math. Phys., vol. 58, no. 4, 2017, Art. ID 041502, doi: 10.1063/1.4982037.
Z. J. Chen and W. M. Zou, “Existence and symmetry of positive ground states for a doubly critical Schrödinger system,” Transactions of the American Mathematical Society, vol. 367, pp. 3599–3646, 2015.
X. J. Feng, H. D. Liu, and Z. T. Zhang, “Normalized solutions for Kirchhoff type equations with combined nonlinearities: The Sobolev critical case,” Discrete and Continuous Dynamical Systems, vol. 43, pp. 2935–2972, 2023.
Y. Gao, L. S. Liu, N. Wei, and Y. H. Wu, “Multiple nontrivial solutions for a Kirchhoff-type transmission problem in R3 with concave–convex nonlinearities,” Nonlinear Analysis: Real World Applications, vol. 85, 2025, Art. ID 104377.
N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory. Cambridge University Press, 1993.
T. Gou and L. Jeanjean, “Existence and orbital stability of standing waves for nonlinear Schrödinger systems,” Nonlinear Anal., vol. 144, pp. 10–22, 2016, doi: 10.1016/j.na.2016.05.016.
T. Gou and L. Jeanjean, “Multiple positive normalized solutions for nonlinear Schrödinger systems,” Nonlinearity, vol. 31, no. 5, pp. 2319–2345, 2018, doi: 10.1088/1361-6544/aab0bf.
X. He and W. Zou, “Infinitely many positive solutions for Kirchhoff-type problems,” Nonlinear Anal., vol. 70, no. 3, pp. 1407–1414, 2009, doi: 10.1016/j.na.2008.02.021.
X. He and W. Zou, “Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3,” J. Differential Equations, vol. 252, no. 2, pp. 1813–1834, 2012, doi: 10.1016/j.jde.2011.08.035.
D. Hu, D. D. Qin, and X. Tang, “Concentration of semiclassical ground states for an N-Laplacian Kirchhoff-type problem with critical exponential growth,” Manuscripta Mathematica, vol. 176, 2025, Art. ID 12.
J. Hu and A. Mao, “Normalized solutions to nonlocal Schrödinger systems with L2-subcritical and supercritical nonlinearities,” J. Fixed Point Theory Appl., vol. 25, no. 3, 2023, Art. ID 77, doi: 10.1007/s11784-023-01077-5.
N. Ikoma, “Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions,” Advanced Nonlinear Studies, vol. 14, pp. 115–136, 2014.
L. Jeanjean, J. Zhang, and X. Zhong, “Normalized ground states for a coupled Schrödinger system: mass super-critical case,” NoDEA Nonlinear Differential Equations Appl., vol. 31, no. 5, 2024, Art. ID 85, doi: 10.1007/s00030-024-00972-1.
G. Kirchhoff, Mechanik. Teubner, 1883.
C.-Y. Lei, J.-F. Liao, and C.-L. Tang, “Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents,” J. Math. Anal. Appl., vol. 421, no. 1, pp. 521–538, 2015, doi: 10.1016/j.jmaa.2014.07.031.
G. B. Li, X. Luo, and T. Yang, “Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent,” Annales Fennici Mathematici, vol. 47, pp. 895–925, 2022.
H. Li and W. Zou, “Normalized ground states for semilinear elliptic systems with critical and subcritical nonlinearities,” J. Fixed Point Theory Appl., vol. 23, no. 3, 2021, Art. ID 43, doi: 10.1007/s11784-021-00878-w.
J.-L. Lions, “On some questions in boundary value problems of mathematical physics,” in Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), ser. North-
Holland Math. Stud. North-Holland, Amsterdam-New York, 1978, vol. 30, pp. 284–346.
J. Liu, J.-F. Liao, and C.-L. Tang, “Positive solutions for Kirchhoff-type equations with critical exponent in RN,” J. Math. Anal. Appl., vol. 429, no. 2, pp. 1153–1172, 2015, doi: 10.1016/j.jmaa.2015.04.066.
M.-Q. Liu and X.-D. Fang, “Normalized solutions for the Schrödinger systems with mass supercritical and double Sobolev critical growth,” Z. Angew. Math. Phys., vol. 73, no. 3, 2022, Art. ID 108, doi: 10.1007/s00033-022-01757-1.
S. Mo and S. W. Ma, “Normalized solutions to Kirchhoff equation with nonnegative potential,” 2023, arXiv:2301.07926.
S. Qi and W. Zou, “Exact number of positive solutions for the Kirchhoff equation,” SIAM J. Math. Anal., vol. 54, no. 5, pp. 5424–5446, 2022, doi: 10.1137/21M1445879.
C. A. Stuart, “Bifurcation from the continuous spectrum in the L2 theory of elliptic equations on Rn,” in Recent Methods in Nonlinear Analysis and Applications, 1981, pp. 231–300.
M. I. Weinstein, “Nonlinear Schrödinger equations and sharp interpolation estimates,” Communications in Mathematical Physics, vol. 87, pp. 567–576, 1982.
L. Xu, F. Li, and Q. Xie, “Existence and multiplicity of normalized solutions with positive energy for the Kirchhoff equation,” Qual. Theory Dyn. Syst., vol. 23, no. 3, 2024, Art. ID 135, doi: 10.1007/s12346-024-01001-3.
L. Xu, C. Song, and Q. Xie, “Multiplicity of normalized solutions for Schrödinger equation with mixed nonlinearity,” Taiwanese J. Math., vol. 28, no. 3, pp. 589–609, 2024, doi: 10.11650/tjm/240202.
Z. Yang, “Normalized ground state solutions for Kirchhoff type systems,” J. Math. Phys., vol. 62, no. 3, 2021, Art. ID 031504, doi: 10.1063/5.0028551.
H. Ye, “The existence of normalized solutions for L2-critical constrained problems related to Kirchhoff equations,” Z. Angew. Math. Phys., vol. 66, no. 4, pp. 1483–1497, 2015, doi: 10.1007/s00033-014-0474-x.
H. Ye, “The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations,” Math. Methods Appl. Sci., vol.38, no.13, pp.2663–2679, 2015, doi: 10.1002/mma.3247.
P. Zhang and Z. Han, “Normalized ground states for Schrödinger system with a coupled critical nonlinearity,” Appl. Math. Lett., vol. 150, 2024, Art. ID 108947, doi: 10.1016/j.aml.2023.108947.
Similar Articles
- Muhammad Aslam Noor, Khalida Inayat Noor, Proximal-Resolvent Methods for Mixed Variational Inequalities , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Jan Brandts, Computation of Invariant Subspaces of Large and Sparse Matrices , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Ciprian G. Gal, Sorin G. Gal, On Fokker-Planck and linearized Korteweg-de Vries type equations with complex spatial variables , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- M. H. Saleh, S. M. Amer, M. A. Mohamed, N. S. Abdelrhman, Approximate solution of fractional integro-differential equation by Taylor expansion and Legendre wavelets methods , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Sirkka-Liisa Eriksson, Heikki Orelma, A simple construction of a fundamental solution for the extended Weinstein equation , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- William Greenberg, Michael Williams, Global Solutions of the Enskog Lattice Equation with Square Well Potential , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, On the semilocal convergence of Newton–type methods, when the derivative is not continuously invertible , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Q. Xie et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










