Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators
-
George A. Anastassiou
ganastss@memphis.edu
Downloads
DOI:
https://doi.org/10.4067/S0719-06462012000300005Abstract
Here we study further the quasi-interpolation of sigmoidal and hyperbolic tangent types neural network operators of one hidden layer. Based on fractional calculus theory we derive fractional Voronovskaya type asymptotic expansions for the error of approximation of these operators to the unit operator.
Keywords
Most read articles by the same author(s)
- George A. Anastassiou, Right general fractional monotone approximation , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
- George A. Anastassiou, Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- George A. Anastassiou, Approximation by Shift Invariant Univariate Sublinear-Shilkret Operators , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- George A. Anastassiou, Approximation by discrete singular operators , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- George A. Anastassiou, Foundations of generalized Prabhakar-Hilfer fractional calculus with applications , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- George A. Anastassiou, Higher order multivariate Fuzzy approximation by basic neural network operators , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- George A. Anastassiou, Spline left fractional monotone approximation involving left fractional differential operators , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- George A. Anastassiou, Multiple general sigmoids based Banach space valued neural network multivariate approximation , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- George A. Anastassiou, Caputo fractional Iyengar type Inequalities , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- George A. Anastassiou, Ostrowski-Sugeno fuzzy inequalities , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
Similar Articles
- Mark A. Pinsky, Asymptotic Solutions of Linear Differential Equations , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
- Xu You, Rational approximation of the finite sum of some sequences , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Taoufik Chitioui, Khalil Ezzinbi, Amor Rebey, Existence and stability in the α-norm for nonlinear neutral partial differential equations with finite delay , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, On the semilocal convergence of Newton–type methods, when the derivative is not continuously invertible , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Saulius Minkevicius, Analysis of the Component-Based Reliability in Computer Networks , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Raymond Mortini, A nice asymptotic reproducing kernel , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Alexander Fabricant, Nikolai Kutev, Tsviatko Rangelov, On the first eigenvalue for linear second order elliptic equations in divergence form , CUBO, A Mathematical Journal: Vol. 9 No. 3 (2007): CUBO, A Mathematical Journal
- Leigh C. Becker, Uniformly Continuous 𿹠Solutions of Volterra Equations and Global Asymptotic Stability , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Georgi Raikov, Spectral Shift Function for Schr¨odinger Operators in Constant Magnetic Fields , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- D. Constales, R. De Almeida, R.S. Krausshar, A Generalization of Wiman and Valiron‘s theory to the Clifford analysis setting , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
<< < 3 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2012-10-01
How to Cite
[1]
G. A. Anastassiou, “Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators”, CUBO, vol. 14, no. 3, pp. 71–83, Oct. 2012.
Issue
Section
Articles