A common fixed point theorem in G-metric spaces
-
S.K. Mohanta
smwbes@yahoo.in
-
Srikanta Mohanta
smwbes@yahoo.in
Downloads
DOI:
https://doi.org/10.4067/S0719-06462012000300006Abstract
We prove a common fixed point theorem for a pair of self mappings in complete G-metric spaces. Our result will improve and supplement some recent results in the setting of G-metric spaces.
Keywords
Similar Articles
- G. S. Saluja, Fixed point theorems on cone \(S\)-metric spaces using implicit relation , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Ajay Kumar, Ekta Tamrakar, Inertial algorithm for solving split inclusion problem in Banach spaces , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Ronald Grimmer, Min He, Fixed Point Theory and Nonlinear Periodic Systems , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Nadjet Abada, Mouffak Benchohra, Hadda Hammouche, Existence Results for Semilinear Differential Evolution Equations with Impulses and Delay , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Sehie Park, Remarks on KKM Maps and Fixed Point Theorems in Generalized Convex Spaces , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Kuldip Raj, Sunil K. Sharma, Some generalized difference double sequence spaces defined by a sequence of Orlicz-functions , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Mehdi Dehghanian, Choonkil Park, Yamin Sayyari, Stability of ternary antiderivation in ternary Banach algebras via fixed point theorem , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- N. Tarkhanov, On Brouwer's Fixed Point Theorem , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Reji T., Jinitha Varughese, Ruby R., On graphs that have a unique least common multiple , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Mouffak Benchohra, Gaston M. N‘Guérékata, Djamila Seba, Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2012-10-01
How to Cite
[1]
S. Mohanta and S. Mohanta, “A common fixed point theorem in G-metric spaces”, CUBO, vol. 14, no. 3, pp. 85–101, Oct. 2012.
Issue
Section
Articles











